IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Abstract

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield. Thus, the understanding of the mechanisms and regulations of sugar transport into sink tissues has an important basic and applied relevance. The grapevine is a good example of a crop where sugar accumulation in the fruit has an important economic role. Massive sugar transport and compartmentation into the grape berry mesocarp cells (up to 1 M glucose and fructose) start at veraison and continues until the harvest. Sucrose transported in the phloem is cleaved into hexoses by invertases and stored in the vacuole. The sugar content determines the sweetness of table grapes and regulates gene expression, including, for example, several genes involved in the synthesis of secondary metabolites which contribute to grape quality. Many viticultural practices affect source/sink relationships, thus altering sugar concentration in the berry.  Considering this, the aim of this work was determined the effect of change of source/sink relations by using treatments of cluster thinning, cane girdling and leaf removal, on anthocyanin and volatile composition in grape berries during ripening. Berry grapes from varieties Red Globe and TimcoTM, cultivated in the same place under the 3 agronomical treatments (cluster thinning, cane girdling and leaf removal) were sampled from veraison to commercial maturity each ≈10-12 days. The anthocyanin composition was analyzed spectrophotometrically and by HPLC-DAD [1]. The volatile profiles from grapes were analyzed employing for the extraction solid-phase microextraction and gas chromatography coupled with mass spectrometry [2]. For both varieties, cluster thinning affect the concentration of total soluble solids and some anthocyanins in relation with the control, increasing their concentration. In relation with volatile compounds forty-one volatile compounds were determined in the two grape varieties analyzed. Among them, the terpene chemical group was the most abundant (qualitatively), accounting for 14 compounds, followed by aldehydes (13), alcohols (9), ketones (3), C13-norisoprenoids (1), and acids (1). Both varieties presented a different behavior in the evolution for the total volatiles during ripening, with a decrease during ripening for Red Globe and an increase in the case of TimcoTM berries. Except for esters with an increase in the treatment with cluster thinning and cane girdling respect the control for TimcoTM samples at commercial maturity, no effect was observed for the rest of the volatile chemical groups among the treatments. Data suggest that use of some of the plant management practices studied may improve berry color, but with a very low and/or inconsistent impact of the plant sink/source on the berry volatile fraction.

References

[1].Cortiella, MG; Ubeda, C; del Barrio-Galan, R; Pena-Neira, A. 2020. Impact of berry size at harvest on red wine composition: a winemaker’s approach. Journal of the Science of Food and agriculture. 100(2):836-845
[2]. Ubeda, C.; Gil i Cortiella, M.; Villalobos-González, L.; Gómez, C.
Pastenes, C.; Peña-Neira, Á. 2020. Ripening and Storage Time Effects on the Aromatic Profile of New Table Grape Cultivars in Chile. Molecules, 25(24), 5790.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Peña-Neira Alvaro1, Vega Rommyna1, Gil i Cortella Mariona2, Gomez-Celis Camila1, Ubeda-Aguilera Cristina2, Villalobos Luis3 and Pastenes Claudio3

1Departamento de Agroindustria y Enología. Facultad de Ciencias Agronómicas, Universidad de Chile.
2Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Material Center, Facultad de Ingeniería, Universidad Autónoma de Chile
3Departamento de Producción Agrícola. Facultad de Ciencias Agronómicas, Universidad de Chile. Santa Rosa 11315, Santiago, Chile.

Contact the author

Keywords

Red Globe; TimcoTM; phenolic compounds; aroma; anthocyanins.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Zoning of the Veneto region areas with Denomination of origin

To characterize in depth the enological productions according to the origin territories and to provide modern tools for the qualitative raising of the assorted typologies of wine produced, Veneto Agricoltura (the regional agency for the agriculture, forestry and food industry development), the Regional Government of Veneto (north-eastern Italy) and various Consortia of Producers have undertaken since 2002 a systematic classification of the viticultural territories by agro-ecological zoning to achieve a strategic project aimed to set Veneto as the first Italian region to have completed in a systematic and scientifically rigorous way the zoning of most of its Denomination of Origin areas.