IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Abstract

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield. Thus, the understanding of the mechanisms and regulations of sugar transport into sink tissues has an important basic and applied relevance. The grapevine is a good example of a crop where sugar accumulation in the fruit has an important economic role. Massive sugar transport and compartmentation into the grape berry mesocarp cells (up to 1 M glucose and fructose) start at veraison and continues until the harvest. Sucrose transported in the phloem is cleaved into hexoses by invertases and stored in the vacuole. The sugar content determines the sweetness of table grapes and regulates gene expression, including, for example, several genes involved in the synthesis of secondary metabolites which contribute to grape quality. Many viticultural practices affect source/sink relationships, thus altering sugar concentration in the berry.  Considering this, the aim of this work was determined the effect of change of source/sink relations by using treatments of cluster thinning, cane girdling and leaf removal, on anthocyanin and volatile composition in grape berries during ripening. Berry grapes from varieties Red Globe and TimcoTM, cultivated in the same place under the 3 agronomical treatments (cluster thinning, cane girdling and leaf removal) were sampled from veraison to commercial maturity each ≈10-12 days. The anthocyanin composition was analyzed spectrophotometrically and by HPLC-DAD [1]. The volatile profiles from grapes were analyzed employing for the extraction solid-phase microextraction and gas chromatography coupled with mass spectrometry [2]. For both varieties, cluster thinning affect the concentration of total soluble solids and some anthocyanins in relation with the control, increasing their concentration. In relation with volatile compounds forty-one volatile compounds were determined in the two grape varieties analyzed. Among them, the terpene chemical group was the most abundant (qualitatively), accounting for 14 compounds, followed by aldehydes (13), alcohols (9), ketones (3), C13-norisoprenoids (1), and acids (1). Both varieties presented a different behavior in the evolution for the total volatiles during ripening, with a decrease during ripening for Red Globe and an increase in the case of TimcoTM berries. Except for esters with an increase in the treatment with cluster thinning and cane girdling respect the control for TimcoTM samples at commercial maturity, no effect was observed for the rest of the volatile chemical groups among the treatments. Data suggest that use of some of the plant management practices studied may improve berry color, but with a very low and/or inconsistent impact of the plant sink/source on the berry volatile fraction.

References

[1].Cortiella, MG; Ubeda, C; del Barrio-Galan, R; Pena-Neira, A. 2020. Impact of berry size at harvest on red wine composition: a winemaker’s approach. Journal of the Science of Food and agriculture. 100(2):836-845
[2]. Ubeda, C.; Gil i Cortiella, M.; Villalobos-González, L.; Gómez, C.
Pastenes, C.; Peña-Neira, Á. 2020. Ripening and Storage Time Effects on the Aromatic Profile of New Table Grape Cultivars in Chile. Molecules, 25(24), 5790.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Peña-Neira Alvaro1, Vega Rommyna1, Gil i Cortella Mariona2, Gomez-Celis Camila1, Ubeda-Aguilera Cristina2, Villalobos Luis3 and Pastenes Claudio3

1Departamento de Agroindustria y Enología. Facultad de Ciencias Agronómicas, Universidad de Chile.
2Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Material Center, Facultad de Ingeniería, Universidad Autónoma de Chile
3Departamento de Producción Agrícola. Facultad de Ciencias Agronómicas, Universidad de Chile. Santa Rosa 11315, Santiago, Chile.

Contact the author

Keywords

Red Globe; TimcoTM; phenolic compounds; aroma; anthocyanins.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Developing and assessing different cordon establishment techniques for long-term vineyard management

Aim: The aim of this research is to quantify the impacts of different cordon establishment techniques on vine health and longevity. It is hypothesised that wrapping developing cordon arms tightly around the cordon wire will cause a constriction of the vascular system, becoming worse over time and disrupting the flow of water and nutrients.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.

Innovative sparkling wines, traditional grape varieties and autochthonous yeasts: emerging trends for regional products diversification

Italy, like all the major vine-growing and wine-producing countries, has experienced a decline in wine export volumes in recent years.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.