IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Abstract

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield. Thus, the understanding of the mechanisms and regulations of sugar transport into sink tissues has an important basic and applied relevance. The grapevine is a good example of a crop where sugar accumulation in the fruit has an important economic role. Massive sugar transport and compartmentation into the grape berry mesocarp cells (up to 1 M glucose and fructose) start at veraison and continues until the harvest. Sucrose transported in the phloem is cleaved into hexoses by invertases and stored in the vacuole. The sugar content determines the sweetness of table grapes and regulates gene expression, including, for example, several genes involved in the synthesis of secondary metabolites which contribute to grape quality. Many viticultural practices affect source/sink relationships, thus altering sugar concentration in the berry.  Considering this, the aim of this work was determined the effect of change of source/sink relations by using treatments of cluster thinning, cane girdling and leaf removal, on anthocyanin and volatile composition in grape berries during ripening. Berry grapes from varieties Red Globe and TimcoTM, cultivated in the same place under the 3 agronomical treatments (cluster thinning, cane girdling and leaf removal) were sampled from veraison to commercial maturity each ≈10-12 days. The anthocyanin composition was analyzed spectrophotometrically and by HPLC-DAD [1]. The volatile profiles from grapes were analyzed employing for the extraction solid-phase microextraction and gas chromatography coupled with mass spectrometry [2]. For both varieties, cluster thinning affect the concentration of total soluble solids and some anthocyanins in relation with the control, increasing their concentration. In relation with volatile compounds forty-one volatile compounds were determined in the two grape varieties analyzed. Among them, the terpene chemical group was the most abundant (qualitatively), accounting for 14 compounds, followed by aldehydes (13), alcohols (9), ketones (3), C13-norisoprenoids (1), and acids (1). Both varieties presented a different behavior in the evolution for the total volatiles during ripening, with a decrease during ripening for Red Globe and an increase in the case of TimcoTM berries. Except for esters with an increase in the treatment with cluster thinning and cane girdling respect the control for TimcoTM samples at commercial maturity, no effect was observed for the rest of the volatile chemical groups among the treatments. Data suggest that use of some of the plant management practices studied may improve berry color, but with a very low and/or inconsistent impact of the plant sink/source on the berry volatile fraction.

References

[1].Cortiella, MG; Ubeda, C; del Barrio-Galan, R; Pena-Neira, A. 2020. Impact of berry size at harvest on red wine composition: a winemaker’s approach. Journal of the Science of Food and agriculture. 100(2):836-845
[2]. Ubeda, C.; Gil i Cortiella, M.; Villalobos-González, L.; Gómez, C.
Pastenes, C.; Peña-Neira, Á. 2020. Ripening and Storage Time Effects on the Aromatic Profile of New Table Grape Cultivars in Chile. Molecules, 25(24), 5790.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Peña-Neira Alvaro1, Vega Rommyna1, Gil i Cortella Mariona2, Gomez-Celis Camila1, Ubeda-Aguilera Cristina2, Villalobos Luis3 and Pastenes Claudio3

1Departamento de Agroindustria y Enología. Facultad de Ciencias Agronómicas, Universidad de Chile.
2Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Material Center, Facultad de Ingeniería, Universidad Autónoma de Chile
3Departamento de Producción Agrícola. Facultad de Ciencias Agronómicas, Universidad de Chile. Santa Rosa 11315, Santiago, Chile.

Contact the author

Keywords

Red Globe; TimcoTM; phenolic compounds; aroma; anthocyanins.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

Sviluppo di una metodologia di tracciabilità e definizione dell’impronta petrochimica in suoli e vini della Sicilia occidentale nella piana di Marsala (TP)

I risultati delle ricerche condotte in un vigneto sperimentale di Marsala (TP), scelto per omogeneità di fattori bio-agronomici (età, tecniche colturali, potenzialità vegetativa e produttiva)

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.