IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

Abstract

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield. Thus, the understanding of the mechanisms and regulations of sugar transport into sink tissues has an important basic and applied relevance. The grapevine is a good example of a crop where sugar accumulation in the fruit has an important economic role. Massive sugar transport and compartmentation into the grape berry mesocarp cells (up to 1 M glucose and fructose) start at veraison and continues until the harvest. Sucrose transported in the phloem is cleaved into hexoses by invertases and stored in the vacuole. The sugar content determines the sweetness of table grapes and regulates gene expression, including, for example, several genes involved in the synthesis of secondary metabolites which contribute to grape quality. Many viticultural practices affect source/sink relationships, thus altering sugar concentration in the berry.  Considering this, the aim of this work was determined the effect of change of source/sink relations by using treatments of cluster thinning, cane girdling and leaf removal, on anthocyanin and volatile composition in grape berries during ripening. Berry grapes from varieties Red Globe and TimcoTM, cultivated in the same place under the 3 agronomical treatments (cluster thinning, cane girdling and leaf removal) were sampled from veraison to commercial maturity each ≈10-12 days. The anthocyanin composition was analyzed spectrophotometrically and by HPLC-DAD [1]. The volatile profiles from grapes were analyzed employing for the extraction solid-phase microextraction and gas chromatography coupled with mass spectrometry [2]. For both varieties, cluster thinning affect the concentration of total soluble solids and some anthocyanins in relation with the control, increasing their concentration. In relation with volatile compounds forty-one volatile compounds were determined in the two grape varieties analyzed. Among them, the terpene chemical group was the most abundant (qualitatively), accounting for 14 compounds, followed by aldehydes (13), alcohols (9), ketones (3), C13-norisoprenoids (1), and acids (1). Both varieties presented a different behavior in the evolution for the total volatiles during ripening, with a decrease during ripening for Red Globe and an increase in the case of TimcoTM berries. Except for esters with an increase in the treatment with cluster thinning and cane girdling respect the control for TimcoTM samples at commercial maturity, no effect was observed for the rest of the volatile chemical groups among the treatments. Data suggest that use of some of the plant management practices studied may improve berry color, but with a very low and/or inconsistent impact of the plant sink/source on the berry volatile fraction.

References

[1].Cortiella, MG; Ubeda, C; del Barrio-Galan, R; Pena-Neira, A. 2020. Impact of berry size at harvest on red wine composition: a winemaker’s approach. Journal of the Science of Food and agriculture. 100(2):836-845
[2]. Ubeda, C.; Gil i Cortiella, M.; Villalobos-González, L.; Gómez, C.
Pastenes, C.; Peña-Neira, Á. 2020. Ripening and Storage Time Effects on the Aromatic Profile of New Table Grape Cultivars in Chile. Molecules, 25(24), 5790.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Peña-Neira Alvaro1, Vega Rommyna1, Gil i Cortella Mariona2, Gomez-Celis Camila1, Ubeda-Aguilera Cristina2, Villalobos Luis3 and Pastenes Claudio3

1Departamento de Agroindustria y Enología. Facultad de Ciencias Agronómicas, Universidad de Chile.
2Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Material Center, Facultad de Ingeniería, Universidad Autónoma de Chile
3Departamento de Producción Agrícola. Facultad de Ciencias Agronómicas, Universidad de Chile. Santa Rosa 11315, Santiago, Chile.

Contact the author

Keywords

Red Globe; TimcoTM; phenolic compounds; aroma; anthocyanins.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.