IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Abstract

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009). The geographical origin of ABM ingredients is never specified.
Since 2013, the European Committee for Standardization (CEN) has issued a method for determining the water fraudulently added to the vinegar and the balsamic vinegar product (EN16466-3 18O-IRMS). The method is based on the stable isotope ratios analysis of the bulk AMB sample (expressed as δ18O in ‰ with respect to the international standard V-SMOW2).
Balsamic vinegars with very high density (higher than 1.37 g / mL of sugar) are available on the market. They are obtained by adding a high amount of concentrated must or by a long aging of the product in the barrel, which leads to an intense evaporation and concentration.
Products with such high density cannot be analyzed by using the official method as reported in the EN16466-3 18O-IRMS. Indeed, in this conditions, the equilibration between CO2 and the water in the sample, being the base principle of the process, does not occur.
In this work, the official method has been modified and validated, calculating repeatability (r) and reproducibility (R), by proceeding with a prior dilution of the sample and by applying a correction to the data in order to eliminate the diluent isotopic contribution. Considering the limit value of δ18O for a non-watered product reported in the literature for vinegar and for rectified concentrated must [1-2], the threshold limit of δ18O below which the ABM product can be considered as adulterated was identified.

References

[1] J. Agric. Food Chem. 2014, 62, 32, 8197–8203
[2] Food Control 2013, 29(1), 107–111

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Perini Matteo1, Pianezze Silvia1 and Paolini Mauro

1FONDAZIONE EDMUND MACH

Contact the author

Keywords

stable isotope analysis, balsamic vinegar, high density, watering down

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait.

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.