IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Abstract

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.
In a recent context where consumers pay an increasingly attention to sustainability and eco-friendly aspects in the decision-making process, the use of mould-resistant grape varieties would be an opportunity for grappa producers as it can be reduced the pesticide utilization in grape management and hence production costs. Some of these varieties have recently been authorized in Italy for winemaking, however the knowledge about their aptitude for grappa production is limited so far.
The present work focused on the sensory active compound characteristics of distillates experimentally obtained from seven mould-resistant varieties recently planted in northern Italy: Aromera, Bronner, Helios, Johanniter, Muscaris, Muscaris, Solaris and Souvigner Gris. The grapes were harvested at maturity for the production of wine over three consecutive vintages and were processed in order to manage separately wine and marc according to a standardized protocol. The marc was fermented in triplicate under controlled conditions and each batch was distilled using an experimental distiller, similar to those traditionally used in Northern Italy. The gas chromatography coupled to mass spectrometry [1] and flame ionisation detector [2] of the heart fractions revealed important differences between the various products. In particular, the varieties Muscaris and Aromera showed a relevant content in terpene compounds, responsible of floral scents.

References

[1] Paolini, M., Tonidandel, L., Moser, S., & Larcher, R. (2018). Development of a fast gas chromatography–tandem mass spectrometry method for volatile aromatic compound analysis in oenological products. Journal of Mass Spectrometry, 53(9), 801-810.
[2] Paolini, M., Tonidandel, L., & Larcher, R. (2022). Development, validation and application of a fast GC-FID method for the analysis of volatile compounds in spirit drinks and wine. Food Control, 108873.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gallo Adelaide1, Moser Sergio1, Roman Tomas1, Tonidandel Loris1, Paolini Mauro1 and Larcher Roberto1

1Fondazione Edmund Mach

Contact the author

Keywords

Grappa, distillates, aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Quantitative and qualitative changes in terpenes during enzymatic maceration and fermentation in wine production: insights from Polish grape varieties

The production of fermented alcoholic beverages involves numerous processes in which microorganisms and enzymes convert components derived from the raw material into a wide range of compounds that affect the sensory characteristics of the resulting product. It is estimated that there may be as many as 800 to 1,000 such compounds in wine. These compounds belong to different chemical groups such as esters, alcohols, carboxylic acids, carbonyl compounds, polyphenols, sugars and many others.

Definition and planning of viticultural landscapes case study in the “Côtes du Rhône Gardoises”

Les préoccupations actuelles autour des paysages viticoles vont au-delà des clichés promotionnels développés par les stratégies marketing. En effet, les paysages sont aujourd’hui au cœur d’une demande sociale croissante qui se traduit par différentes lois (la loi paysage de 1993, le paysage reconnu comme patrimoine commun de la nation par la loi n°95-101, la création du Conseil national du paysage par arrêté du 8/12/2000).

Resistance profiling of PIWI accessions: insights from Geisenheim university’s breeding program

Context and purpose of the study. Fungus-resistant grape varieties (PIWIs) represent a significant advancement toward more environmentally sustainable viticulture.

New satellite-based sampling protocols for grapevine nutrient monitoring

Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.