IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Abstract

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.
In a recent context where consumers pay an increasingly attention to sustainability and eco-friendly aspects in the decision-making process, the use of mould-resistant grape varieties would be an opportunity for grappa producers as it can be reduced the pesticide utilization in grape management and hence production costs. Some of these varieties have recently been authorized in Italy for winemaking, however the knowledge about their aptitude for grappa production is limited so far.
The present work focused on the sensory active compound characteristics of distillates experimentally obtained from seven mould-resistant varieties recently planted in northern Italy: Aromera, Bronner, Helios, Johanniter, Muscaris, Muscaris, Solaris and Souvigner Gris. The grapes were harvested at maturity for the production of wine over three consecutive vintages and were processed in order to manage separately wine and marc according to a standardized protocol. The marc was fermented in triplicate under controlled conditions and each batch was distilled using an experimental distiller, similar to those traditionally used in Northern Italy. The gas chromatography coupled to mass spectrometry [1] and flame ionisation detector [2] of the heart fractions revealed important differences between the various products. In particular, the varieties Muscaris and Aromera showed a relevant content in terpene compounds, responsible of floral scents.

References

[1] Paolini, M., Tonidandel, L., Moser, S., & Larcher, R. (2018). Development of a fast gas chromatography–tandem mass spectrometry method for volatile aromatic compound analysis in oenological products. Journal of Mass Spectrometry, 53(9), 801-810.
[2] Paolini, M., Tonidandel, L., & Larcher, R. (2022). Development, validation and application of a fast GC-FID method for the analysis of volatile compounds in spirit drinks and wine. Food Control, 108873.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gallo Adelaide1, Moser Sergio1, Roman Tomas1, Tonidandel Loris1, Paolini Mauro1 and Larcher Roberto1

1Fondazione Edmund Mach

Contact the author

Keywords

Grappa, distillates, aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV. Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.