IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

Abstract

Reduced off-flavour is an organoleptic defect due to an excess of volatile sulfur compounds (VSC) in wine and often happening in Shiraz wines. This off-flavour is a direct consequence of the lack of oxygen flow during winemaking and bottle storage. Therefore, wine closure could have a direct impact on the formation of VSC due to the oxygen transfer rate that can modulate their levels. Even if dimethylsulfide (DMS) contributes to reduced off-flavor, it is also a fruity note enhancer in wine and its evolution during wine ageing is not well understood. Until now, we knew that DMS was mainly released from S-methylmethionine and DMSO during wine ageing. Chemical equilibrium between DMS and all the DMS precursors called also DMS potential (DMSP) are not well understood and the influence of the closure permeability has never been investigated. In this study, we studied (a) the evolution of 7 VSC in Shiraz wines by GC-MS/MS according to several closure permeabilities and (b) the equilibrium between DMS-DMSP during accelerated wine ageing. In practice, 6 Shiraz wines were collected from 2 regions in France and bottled under anaeroby conditions with 4 different wine closures made with micro-agglomerated cork exhibiting 4 different oxygen transfer rates. VSC and DMSP were analyzed by HS-SPME-GC-MS/MS at the beginning and after 3 months of storage at 35°C. Globally, the total amount of VSC increased after 3 months of accelerated ageing, corroborating that reduced off-flavour can appear during bottle ageing due to hypothetic decomplexation mechanisms. Among the 7 analyzed VSC, only 3 (H2S, MeSH and DMS) showed significant changes in their levels during wine ageing. Indeed, the levels of H2S increased by a factor of 1.4 ± 0.5. The type of closure seemed to modulate the production of H2S, but no evident relation has been found. For MeSH, an overall increase was observed and was equal in average to a factor of 5.2 ± 2.7. For DMS, a significant increase of a factor of 5.1 ± 2.5 was observed and a general tendancy appeared : the most permeable closures induced a smaller production of DMS during ageing. It appeared that DMS could escape through the closure and that the loss was proportional to the permeability of the closure. Since DMS came from the chemical degradation of DMSP, we studied the evolution of DMSP during wine ageing. As expected, DMSP levels decreased during ageing by a factor of 1.5 ± 0.4 and we observed a correlation with closure permeability : the most permeable closures favoured the degradation of DMSP, suggesting that oxygen level could play a role in this mechanism. Under accelerated ageing conditions, VSC levels increased significantly and could reinforce the reduced off-flavour of Shiraz wines. For the first time, closure permeability and so, indirectly oxygen level, could play a role in the DMSP degradation. From a technical point of view, closures with a very low permeability seem to be recommended to preserve DMS.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

De La Burgade Rémi1, Nolleau Valérie1, Godet Teddy1, Galy Nicolas2, Tixador Dimitri2, Loisel Christophe2, Sommerer Nicolas1 and Roland Aurélie1

1SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2DIAM Bouchage

Contact the author

Keywords

volatile sulfur compounds, bottle ageing, wine closure, reduction, oxygen transfer rate

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Multicriteria assessment of 11 agroecological viticulture systems during six years

Context and purpose of the study. Modern conventional agriculture, including viticulture, relies greatly on the use of chemical inputs, especially synthetic pesticides.

Study and valorization of vineyards “terroirs” in the Val de Loire

Face à la concurrence mondiale, il est indispensable de s’orienter vers des vins de qualité, marqués par une typicité et une authenticité inimitables. Le terroir représente, pour une région donnée, un patrimoine unique et non reproductible, qui peut être valorisé à travers l’origine et les caractéristiques sensorielles du vin.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].