IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

Abstract

Reduced off-flavour is an organoleptic defect due to an excess of volatile sulfur compounds (VSC) in wine and often happening in Shiraz wines. This off-flavour is a direct consequence of the lack of oxygen flow during winemaking and bottle storage. Therefore, wine closure could have a direct impact on the formation of VSC due to the oxygen transfer rate that can modulate their levels. Even if dimethylsulfide (DMS) contributes to reduced off-flavor, it is also a fruity note enhancer in wine and its evolution during wine ageing is not well understood. Until now, we knew that DMS was mainly released from S-methylmethionine and DMSO during wine ageing. Chemical equilibrium between DMS and all the DMS precursors called also DMS potential (DMSP) are not well understood and the influence of the closure permeability has never been investigated. In this study, we studied (a) the evolution of 7 VSC in Shiraz wines by GC-MS/MS according to several closure permeabilities and (b) the equilibrium between DMS-DMSP during accelerated wine ageing. In practice, 6 Shiraz wines were collected from 2 regions in France and bottled under anaeroby conditions with 4 different wine closures made with micro-agglomerated cork exhibiting 4 different oxygen transfer rates. VSC and DMSP were analyzed by HS-SPME-GC-MS/MS at the beginning and after 3 months of storage at 35°C. Globally, the total amount of VSC increased after 3 months of accelerated ageing, corroborating that reduced off-flavour can appear during bottle ageing due to hypothetic decomplexation mechanisms. Among the 7 analyzed VSC, only 3 (H2S, MeSH and DMS) showed significant changes in their levels during wine ageing. Indeed, the levels of H2S increased by a factor of 1.4 ± 0.5. The type of closure seemed to modulate the production of H2S, but no evident relation has been found. For MeSH, an overall increase was observed and was equal in average to a factor of 5.2 ± 2.7. For DMS, a significant increase of a factor of 5.1 ± 2.5 was observed and a general tendancy appeared : the most permeable closures induced a smaller production of DMS during ageing. It appeared that DMS could escape through the closure and that the loss was proportional to the permeability of the closure. Since DMS came from the chemical degradation of DMSP, we studied the evolution of DMSP during wine ageing. As expected, DMSP levels decreased during ageing by a factor of 1.5 ± 0.4 and we observed a correlation with closure permeability : the most permeable closures favoured the degradation of DMSP, suggesting that oxygen level could play a role in this mechanism. Under accelerated ageing conditions, VSC levels increased significantly and could reinforce the reduced off-flavour of Shiraz wines. For the first time, closure permeability and so, indirectly oxygen level, could play a role in the DMSP degradation. From a technical point of view, closures with a very low permeability seem to be recommended to preserve DMS.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

De La Burgade Rémi1, Nolleau Valérie1, Godet Teddy1, Galy Nicolas2, Tixador Dimitri2, Loisel Christophe2, Sommerer Nicolas1 and Roland Aurélie1

1SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2DIAM Bouchage

Contact the author

Keywords

volatile sulfur compounds, bottle ageing, wine closure, reduction, oxygen transfer rate

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and iii) identifying the impact of temperature on grape berry attributes.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Il turismo del vino: dalla logica individuale a quella di distretto

In alcuni lavori condotti alcuni anni or sono, abbiamo analizzato per un verso le tendenze della domanda di prodotti enologici, ed il comportamento del consumatore, e per un altro verso le motivazioni alla base delle scelte dell’enoturista, ovvero di colui che va per vigne e cantine per fruire di risorse enogastronomiche.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].