IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

Abstract

Reduced off-flavour is an organoleptic defect due to an excess of volatile sulfur compounds (VSC) in wine and often happening in Shiraz wines. This off-flavour is a direct consequence of the lack of oxygen flow during winemaking and bottle storage. Therefore, wine closure could have a direct impact on the formation of VSC due to the oxygen transfer rate that can modulate their levels. Even if dimethylsulfide (DMS) contributes to reduced off-flavor, it is also a fruity note enhancer in wine and its evolution during wine ageing is not well understood. Until now, we knew that DMS was mainly released from S-methylmethionine and DMSO during wine ageing. Chemical equilibrium between DMS and all the DMS precursors called also DMS potential (DMSP) are not well understood and the influence of the closure permeability has never been investigated. In this study, we studied (a) the evolution of 7 VSC in Shiraz wines by GC-MS/MS according to several closure permeabilities and (b) the equilibrium between DMS-DMSP during accelerated wine ageing. In practice, 6 Shiraz wines were collected from 2 regions in France and bottled under anaeroby conditions with 4 different wine closures made with micro-agglomerated cork exhibiting 4 different oxygen transfer rates. VSC and DMSP were analyzed by HS-SPME-GC-MS/MS at the beginning and after 3 months of storage at 35°C. Globally, the total amount of VSC increased after 3 months of accelerated ageing, corroborating that reduced off-flavour can appear during bottle ageing due to hypothetic decomplexation mechanisms. Among the 7 analyzed VSC, only 3 (H2S, MeSH and DMS) showed significant changes in their levels during wine ageing. Indeed, the levels of H2S increased by a factor of 1.4 ± 0.5. The type of closure seemed to modulate the production of H2S, but no evident relation has been found. For MeSH, an overall increase was observed and was equal in average to a factor of 5.2 ± 2.7. For DMS, a significant increase of a factor of 5.1 ± 2.5 was observed and a general tendancy appeared : the most permeable closures induced a smaller production of DMS during ageing. It appeared that DMS could escape through the closure and that the loss was proportional to the permeability of the closure. Since DMS came from the chemical degradation of DMSP, we studied the evolution of DMSP during wine ageing. As expected, DMSP levels decreased during ageing by a factor of 1.5 ± 0.4 and we observed a correlation with closure permeability : the most permeable closures favoured the degradation of DMSP, suggesting that oxygen level could play a role in this mechanism. Under accelerated ageing conditions, VSC levels increased significantly and could reinforce the reduced off-flavour of Shiraz wines. For the first time, closure permeability and so, indirectly oxygen level, could play a role in the DMSP degradation. From a technical point of view, closures with a very low permeability seem to be recommended to preserve DMS.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

De La Burgade Rémi1, Nolleau Valérie1, Godet Teddy1, Galy Nicolas2, Tixador Dimitri2, Loisel Christophe2, Sommerer Nicolas1 and Roland Aurélie1

1SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2DIAM Bouchage

Contact the author

Keywords

volatile sulfur compounds, bottle ageing, wine closure, reduction, oxygen transfer rate

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures. A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation.