IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

Abstract

Aim: The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact. 

Materials and methods: For that purpose, a red wine of Cabernet Sauvignon from 2016 vintage was aged for 12 months in new barrels of these three oak species. A similar wine from the following vintage (2017) was aged in the same barrels for knowing how the use of the barrels affects their capacity to release volatile substances and its organoleptic impact. The volatile compounds released from the oak wood were analyzed by GC/MS according with the procedure described by Ibarz et al. (2006). The ellagitannins were analyzed by HPLC-DADESI-MS/MS according with the method reported by Navarro et al. (2017). Dscriptive sensory analysis was performed by a trained panel. This panel was made up of 16 students (10 males and 6 females) aged between 21 and 25, who had been training together for 3 years while studying sensory analysis as part of the enology degree.

Results and discussion: As expected, the wine aged in new Q. alba barrels presented the highest concentration in β-methyl-γ-octalactones and the lowest concentration of ellagitannins whereas the wine aged in new Q. petraea barrels presented much higher concentration of ellagitannins and much lower concentration of β-methyl-γ-octalactones. In contrast, the wine aged in new Q. pyrenaica barrels presented a concentration of ellagitannins even higher than the wine aged in new Q. petraea barrels and an intermediate concentration of β-methyl-γ-octalactones. No significant differences were found in vanillin and other volatile substances. Finally, ellagitannins and all volatile substances concentration decreased drastically the wines aged in all the one year used barrels. In general, the results of sensory analysis showed that wines aged in Q. pyrenaica barrels were somewhat less appreciated than those aged in barrels of Q, petraea but better than those aged in barrels of Q. alba.

Conclusions: The main conclusion is that Q. pyrenaica has a great interest as a source of wood for cooperage.

References

Ibarz M., Ferreira V., Hernández-Orte P., Loscos N. and Cacho J., 2006. Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavors precursors extracted from grapes. Journal of Chromatography A, 1116, 217–229. doi:10.1016/j.chroma.2006.03.020
Navarro M., Kontoudakis N., Canals J.M., García- Romero E., Gómez-Alonso S., Zamora F., and Hermosín-Gutíerrez I., 2017. Improved method for the extraction and chromatographic analysis on fused-core columns of occurring ellagitannins in oak-aged wine. Food Chemistry, 226, 23–31. doi:10.1016/j. foodchem.2017.01.043

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zamora Fernando1, Gombau Jordi1, Cabanillas Pedro1, Mena Adela2, Gómez-Alonso Sergio3, García-Romero Esteban2 and Canals Joan Miquel1

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili 
2Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Tomelloso, Ciudad Real, Spain 
3Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada. Universidad de Castilla-La Mancha 

Contact the author

Keywords

Oak; Q. pyrenaica; Barrels; Volatile substances; Ellagitannins

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Wine ageing: Managing wood contact time.

Barrel ageing is a transformative process that alters a wine’s organoleptic properties and consequently its price. Even though it is considered beneficial mostly for red wines, ageing can also be used for white wines but for shorter time periods. Due to barrel costs, space requirements and the markets’ demands for fast release of each new vintage, new products such as oak chips or shavings have been developed to help minimize the time needed for the extraction of essential wood compounds.

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

SO2 consumption in white wine oxidation: approaches to low input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in maintaining wine quality during its shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.