IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

Abstract

Aim: The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact. 

Materials and methods: For that purpose, a red wine of Cabernet Sauvignon from 2016 vintage was aged for 12 months in new barrels of these three oak species. A similar wine from the following vintage (2017) was aged in the same barrels for knowing how the use of the barrels affects their capacity to release volatile substances and its organoleptic impact. The volatile compounds released from the oak wood were analyzed by GC/MS according with the procedure described by Ibarz et al. (2006). The ellagitannins were analyzed by HPLC-DADESI-MS/MS according with the method reported by Navarro et al. (2017). Dscriptive sensory analysis was performed by a trained panel. This panel was made up of 16 students (10 males and 6 females) aged between 21 and 25, who had been training together for 3 years while studying sensory analysis as part of the enology degree.

Results and discussion: As expected, the wine aged in new Q. alba barrels presented the highest concentration in β-methyl-γ-octalactones and the lowest concentration of ellagitannins whereas the wine aged in new Q. petraea barrels presented much higher concentration of ellagitannins and much lower concentration of β-methyl-γ-octalactones. In contrast, the wine aged in new Q. pyrenaica barrels presented a concentration of ellagitannins even higher than the wine aged in new Q. petraea barrels and an intermediate concentration of β-methyl-γ-octalactones. No significant differences were found in vanillin and other volatile substances. Finally, ellagitannins and all volatile substances concentration decreased drastically the wines aged in all the one year used barrels. In general, the results of sensory analysis showed that wines aged in Q. pyrenaica barrels were somewhat less appreciated than those aged in barrels of Q, petraea but better than those aged in barrels of Q. alba.

Conclusions: The main conclusion is that Q. pyrenaica has a great interest as a source of wood for cooperage.

References

Ibarz M., Ferreira V., Hernández-Orte P., Loscos N. and Cacho J., 2006. Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavors precursors extracted from grapes. Journal of Chromatography A, 1116, 217–229. doi:10.1016/j.chroma.2006.03.020
Navarro M., Kontoudakis N., Canals J.M., García- Romero E., Gómez-Alonso S., Zamora F., and Hermosín-Gutíerrez I., 2017. Improved method for the extraction and chromatographic analysis on fused-core columns of occurring ellagitannins in oak-aged wine. Food Chemistry, 226, 23–31. doi:10.1016/j. foodchem.2017.01.043

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zamora Fernando1, Gombau Jordi1, Cabanillas Pedro1, Mena Adela2, Gómez-Alonso Sergio3, García-Romero Esteban2 and Canals Joan Miquel1

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili 
2Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Tomelloso, Ciudad Real, Spain 
3Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada. Universidad de Castilla-La Mancha 

Contact the author

Keywords

Oak; Q. pyrenaica; Barrels; Volatile substances; Ellagitannins

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis. Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Montpellier vine & wine sciences (M-WineS)

The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.