IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Abstract

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters.  Two sets of Amarone wines from different vintages 2015 (17 wines) and 2016 (15 wines) were analyzed. The analyses were carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task. From both data sets, 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are b-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis-whisky lactone. The only differences found between the two vintages’ OAV list, could be observed in the presence of dimethyl trisulfide (DMTS) in the vintage 2015; whereas in the 2016 set g-nonalactone and trans-whisky lactone were found. Regarding the compounds that impart the most differences across both vintages, OAV max/min, where 4- ethyl phenol, 4-ethyl guaiacol, 1,8-cineole, 1,4-cineole, dimethyl sulfide (DMS). Results from the sorting task sensory analysis of the 17 wines from vintage 2015 showed three clusters formed. Cluster 1 composed of eight wines and described as “red fruit”, “solvent” and “sweet spices”. Cluster 2 formed by four Amarone was associated mainly with the “animal” and “oak/toasted” attributes. And cluster 3 (five wines) described with the attribute “cooked fruit”. While in the sorting task of vintage 2016 (15 wines) two clusters were formed: cluster A formed by 5 wines described as “cooked fruit” and “solvent”; and cluster B (10 wines) associated with the attributes “sweet spices”, “red fruit” and “oak/toasted”. To our knowledge the present research is the first attempt to identify and classify Amarone della Valpolicella commercial wines in terms of aroma. This study provides a list of compounds that can be characteristic of Amarone wine and that have been consistent across two vintages coming from different wineries . Moreover, from the volatiles analyzed, compounds such as dimethyl sulfide (DMS) and cineoles have been singled out as potential aroma markers of diversity in Amarone wines. Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can affect the perceived aroma. Therefore, in order to investigate this variation, the influence of grape variety, withering, precursor and vintage on DMS formation was studied. To achieve this a set of experimental wines, vintage 2017, 2018 and 2019 made with Corvina and Corvinone (fresh and withered) grapes from five different vineyards was submitted to accelerated aging. Samples in duplicate were kept at 45 °C for 24, 48, and 96 days, and then analyzed by HS-SPME GC-MS to determine their DMS content.Results showed minor increases in all samples at 24 and 48 days, whereas a considerable accumulation of DMS occurred at 96 days with concentrations approaching values around 120 μg/L. Additionally, it was observed that wines made from withered grapes presented higher concentrations respect to those made with fresh grapes, while the grape variety did not show a significant difference. The precursor influence in the wines was explored as well through the correlation between DMS concentration and primary amino acid nitrogen (PAN) content in wines (before aging). PAN content was measured at 340 nm in an automatic analyzer. In wines from vintage 2017, a good correlation (R2=0.7742) was found between the DMS (concentration of DMS at 96 days minus initial concentration) and PAN. While for wines from vintage 2018 and 2019, the correlation was 0.5581 and 0.4043, respectively. Finally, in order to further elucidate additional factors related to the variability in the ability of wines to generate DMS during aging, the influence of pH was also investigated. For this, two sets of wine, one spiked with SMM, were submitted to an accelerated aging (one month, 45 °C), in which pH was adjusted to 3 and 4. Results showed an increase in DMS of 10% in the samples with pH 4, which could be explained by the stability of SMM in acid conditions, therefore, at a higher pH the precursor could be more prone to release DMS.  Concluding, this study points out PAN as a potential tool to predict the production of DMS during aging. As well as providing some indications of the influence of withering in DMS production. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Samaniego Solis Jessica Anahi1, Luzzini Giovanni1, Slaghenaufi Davide1 and Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

DMS, Corvina, Corvinone, wine aging, Amarone

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing.

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.