IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Abstract

Atypical ageing (ATA) is a wine aroma fault occurring in white wines characterised by an early loss of varietal aroma as well as nuances of wet mop, acacia blossom, shoe polish and dirty rag among others. 2-aminoacetophenone (2AAP) – a degradation product of indole-3-acetic acid (IAA) – has been described as the major odour-active compound and chemical marker responsible for this off-flavour. Depending on the aroma intensity of wines, its odour threshold varies from 0.5 to 10.5 μg/L. It seems that a stress reaction in the vineyard triggered by climatic, pedological and viticultural factors can ultimately cause ATA development in wines and therefore shorten their shelf-life. To the best of our knowledge, the impact of conventional and organic approaches on the development of this aroma fault has not yet been evaluated. Therefore, the aim of this study was to investigate the influence of three grapevine management systems on the occurrence of ATA. As white wines are characterised by a higher risk of ATA development, the experiments were carried out on Pinot Blanc grape samples (and corresponding wines) cultivated using a conventional and two organic approaches over the course of three vintages (2016, 2017, 2018). The management systems mainly differed for the fertilisation regime (mineral, organic and green manure) and the in-row weed control (chemical and mechanical).
The amino acid profiles as well as the 2AAP and its precursors were quantified in musts and wines using an ultra-high performance liquid chromatographer (UHPLC) coupled to a high-resolution mass spectrometer (HRMS). The results revealed the existence of a strong vintage effect and the lack of influence of the agronomic system on the concentrations of the compounds under examination. It was concluded that an efficient implementation of different grapevine production systems do not affect ATA development.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delaiti Simone1, Nardin Tiziana1 ,Roman Tomas1, Pedò Stefano1, Zanzotti Roberto1 and Larcher Roberto1

1Edmund Mach Foundation (FEM)

Contact the author

Keywords

atypical ageing, Pinot blanc, UHPLC-HRMS, grape production system, aroma fault

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Grape genetic research in the age of pangenomes

Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.