IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Abstract

Atypical ageing (ATA) is a wine aroma fault occurring in white wines characterised by an early loss of varietal aroma as well as nuances of wet mop, acacia blossom, shoe polish and dirty rag among others. 2-aminoacetophenone (2AAP) – a degradation product of indole-3-acetic acid (IAA) – has been described as the major odour-active compound and chemical marker responsible for this off-flavour. Depending on the aroma intensity of wines, its odour threshold varies from 0.5 to 10.5 μg/L. It seems that a stress reaction in the vineyard triggered by climatic, pedological and viticultural factors can ultimately cause ATA development in wines and therefore shorten their shelf-life. To the best of our knowledge, the impact of conventional and organic approaches on the development of this aroma fault has not yet been evaluated. Therefore, the aim of this study was to investigate the influence of three grapevine management systems on the occurrence of ATA. As white wines are characterised by a higher risk of ATA development, the experiments were carried out on Pinot Blanc grape samples (and corresponding wines) cultivated using a conventional and two organic approaches over the course of three vintages (2016, 2017, 2018). The management systems mainly differed for the fertilisation regime (mineral, organic and green manure) and the in-row weed control (chemical and mechanical).
The amino acid profiles as well as the 2AAP and its precursors were quantified in musts and wines using an ultra-high performance liquid chromatographer (UHPLC) coupled to a high-resolution mass spectrometer (HRMS). The results revealed the existence of a strong vintage effect and the lack of influence of the agronomic system on the concentrations of the compounds under examination. It was concluded that an efficient implementation of different grapevine production systems do not affect ATA development.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delaiti Simone1, Nardin Tiziana1 ,Roman Tomas1, Pedò Stefano1, Zanzotti Roberto1 and Larcher Roberto1

1Edmund Mach Foundation (FEM)

Contact the author

Keywords

atypical ageing, Pinot blanc, UHPLC-HRMS, grape production system, aroma fault

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Vineyards and clay minerals: multi-technique analytical approach and correlations with soil properties

Purpose of this research is to quantitatively assess the mineral component of vineyard soils, with particular attention to the mineralogical analysis of clays, which represent an element of high importance in the vineyard culture as well as in general agriculture. An X-ray diffraction (XRD) / thermogravimetric (TG) multi-technique analytical approach was developed, tested on soil samples taken from vineyards around the world. This codified analytical procedure was necessary to obtain precise qualitative and quantitative mineralogical data, globally comparable to distinguish the geopedological identity of the vineyards. Soil samples from vineyards of various locations were analysed, in very different geological conditions. The bulk-rock quantitative phase analysis (QPA) was obtained by the Rietveld method while the detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns. The research provided a precise classification of the mineral component of soils, distinguishing the mineral phases of the clays and the so-called mixed-layer clay minerals. We found that the content in mixed layers can be directly correlated with the water retention and the cation exchange capacity ​​of the soil, while the presence of other clayey minerals and phyllosilicates in this research did not affect this CEC parameter, which codes the fertility level of the soils. The study demonstrates that terroir, in particular soils formed in complex or very different geological conditions, can only be effectively interpreted by properly analysing its mineral phases, in particular the mixed-layer clay component. These are characteristic abiotic ecological indicators, which may have specific eco-physiological influences on the plant.

Biological de-sugaring of grape musts to adjust the alcoholic strength of wine

Climate change is having an ever-increasing impact on the physico-chemical composition of grapes, with ever-lower acidity and higher sugar levels.

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.