IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Abstract

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering.  This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine. The aim of this study was to investigate the volatile chemical composition of dry red passito wines obtained from withered grapes from different origins and vintages, and assess the existence of recurring patterns that could represent unique aroma chemical signatures. Comparison between wine volatile profiles and grape compositional data allowed to identify some key grape compositional features underling such aroma. Corvina and Corvinone withered grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three consecutive vintages (2017-2019). Winemaking was performed under standardized conditions Free volatile compounds and glycosidic precursors were analysed with GC-MS analysis.

Sensory characteristics of the wines have been investigated through sorting tasks performed with semi-trained panel. PCA analysis techniques allowed to identify volatile chemical patterns representing the aroma chemical signature of the geographical origin of each wine. Terpenes and norisoprenoids were the main drivers of vineyards aroma chemical signatures, but many other compounds such as vanillates, branched chain ethyl esters and acetate ester contributed significantly. The contribution of certain fermentative compounds to chemical signatures, like isoamyl acetate was also important. Patterns of odor similarities were observed during sensory evaluation, even if they were not always associated with geographical. Variations in wine terpenes content were associated with the grape content of different forms, mainly free. Finally a good correlation between grape content of yeast assimilable nitrogen  and wine isoamyl acetate content was observed, further broadening the boundaries of vineyard factors able to influence wine aroma.This study provides evidence for the existence of volatile chemical signatures that are representative of geographical origin even in wines from withered grapes. Azienda Agricola F.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Luzzini Giovanni1, Slaghenaufi Davide1, Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

Chemical signature of geographical identity; Valpolicella; Tipicality; Red wine aroma, terroir

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Entre ce que les consommateurs disent, ce qu’ils apprécient et ce qu’ils achètent… où se situent les vins de chasselas ?

Originaire du bassin lémanique, le chasselas est l’emblème de la viticulture suisse. Pour autant, les surfaces de chasselas n’ont cessé de diminuer, passant de 6’585 hectares en 1986 à près de 3’600 aujourd’hui, reflet d’une baisse de consommation. Une récente étude a cherché à comprendre les raisons de ce désintérêt. Réalisée dans

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Pedicel lenticel diversity of cultivars and their influence on cell death and berry shrivel

Shrinking berries are the common symptoms of Berry Shrivel (BS) and Late-Season-Dehydration (LSD) in grapevine cultivars.