IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Abstract

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering.  This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine. The aim of this study was to investigate the volatile chemical composition of dry red passito wines obtained from withered grapes from different origins and vintages, and assess the existence of recurring patterns that could represent unique aroma chemical signatures. Comparison between wine volatile profiles and grape compositional data allowed to identify some key grape compositional features underling such aroma. Corvina and Corvinone withered grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three consecutive vintages (2017-2019). Winemaking was performed under standardized conditions Free volatile compounds and glycosidic precursors were analysed with GC-MS analysis.

Sensory characteristics of the wines have been investigated through sorting tasks performed with semi-trained panel. PCA analysis techniques allowed to identify volatile chemical patterns representing the aroma chemical signature of the geographical origin of each wine. Terpenes and norisoprenoids were the main drivers of vineyards aroma chemical signatures, but many other compounds such as vanillates, branched chain ethyl esters and acetate ester contributed significantly. The contribution of certain fermentative compounds to chemical signatures, like isoamyl acetate was also important. Patterns of odor similarities were observed during sensory evaluation, even if they were not always associated with geographical. Variations in wine terpenes content were associated with the grape content of different forms, mainly free. Finally a good correlation between grape content of yeast assimilable nitrogen  and wine isoamyl acetate content was observed, further broadening the boundaries of vineyard factors able to influence wine aroma.This study provides evidence for the existence of volatile chemical signatures that are representative of geographical origin even in wines from withered grapes. Azienda Agricola F.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Luzzini Giovanni1, Slaghenaufi Davide1, Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

Chemical signature of geographical identity; Valpolicella; Tipicality; Red wine aroma, terroir

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area

Pacific Northwest wine regions and climates

This paper presents a review of wine regions in the Pacific Northwest (PNW) of North America. The PNW consists of the states of Oregon, Washington and Idaho and the province of British Columbia.

Evaluation of clonal variability of phenolic compounds in Vitis vinifera L. cv. Trnjak crni grown in Croatia

Context and purpose of the study. Croatia has rich grapevine genetic resources with more than 130 native varieties preserved.

Tracing glycosidically-bound smoke taint markers from grape to wine

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke.