IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Abstract

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage. In this sense, non-thermal technologies such as ultrasound or microwave waves have been evaluated to compare their effect on the release of compounds from oak wood and their influence on the aromatic profile versus the use of oak wood chips.The concentration of the main compounds released to wine during aging process by means of oak chips (7 g/L) from two species (Quercus alba and Q. robur) was monitored every 6 time points for 24 days. Results showed that concentrations of trans- and cis-whisky lactones, furfural, vanillin, syringol, eugenol and guaiacol among others increased remarkably up to 8 days of aging, after which the increase was statistically insignificant. Taking these quantities as a reference, the same wine was subjected to contact with oak chips under different ultrasounds and microwaves treatments conditions to emulate aging process in the shortest possible time. On the one hand, ultrasound technique was applied to wine in contact with oak chips with a power of 400 W during 15 min, 2 h and 12 horas, the latter applied by hourly pulses. On the other hand, microwave technique was also handled by different treatments: 900 W during 10 min, and 700 W for 10 and 20 min.Results showed that wines subjected to treatments of ultrasounds 400 W during 12 hours by pulses and microwaves with 700 W for 20 min reached similar concentrations of compounds released from oak chips as wines macerated for 8 days. However, from a sensory point of view, the ultrasound treated wines showed similar scores in aging descriptors (vanilla, spice, wood, toast…) as wines macerated with oak chips for 8 days.Therefore, both techniques can be considered to bring an accelerated aging, significantly shortening the time required for it, which will undoubtedly be an advantage for wine industries. However, considering the sensory repercussions, ultrasound technique seems to be more feasible than the use of microwaves.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Oliver-Simancas Rodrigo1, Alañón-Pardo1, Pérez-Coello1 and Muñoz-García1

1Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA)

Contact the author

Keywords

Ultrasounds, microwaves, red wine, oak chips, accelerated aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Topographic modeling with GIS at Serra Gaúcha, Brazil: elements to study viticultural terroir

Brazil is historically known at the international wine market as an importer, eventhough in the last decades there was an increase in quantity and quality of the internal production. Nowadays, about 40% of fine wines comsuption of the country are national ones. The main production region is called Serra Gaúcha, where the natural conditions are heterogeneous and viticulture is develloped in small properties, mainly done by the owners family.

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.