IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Abstract

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage. In this sense, non-thermal technologies such as ultrasound or microwave waves have been evaluated to compare their effect on the release of compounds from oak wood and their influence on the aromatic profile versus the use of oak wood chips.The concentration of the main compounds released to wine during aging process by means of oak chips (7 g/L) from two species (Quercus alba and Q. robur) was monitored every 6 time points for 24 days. Results showed that concentrations of trans- and cis-whisky lactones, furfural, vanillin, syringol, eugenol and guaiacol among others increased remarkably up to 8 days of aging, after which the increase was statistically insignificant. Taking these quantities as a reference, the same wine was subjected to contact with oak chips under different ultrasounds and microwaves treatments conditions to emulate aging process in the shortest possible time. On the one hand, ultrasound technique was applied to wine in contact with oak chips with a power of 400 W during 15 min, 2 h and 12 horas, the latter applied by hourly pulses. On the other hand, microwave technique was also handled by different treatments: 900 W during 10 min, and 700 W for 10 and 20 min.Results showed that wines subjected to treatments of ultrasounds 400 W during 12 hours by pulses and microwaves with 700 W for 20 min reached similar concentrations of compounds released from oak chips as wines macerated for 8 days. However, from a sensory point of view, the ultrasound treated wines showed similar scores in aging descriptors (vanilla, spice, wood, toast…) as wines macerated with oak chips for 8 days.Therefore, both techniques can be considered to bring an accelerated aging, significantly shortening the time required for it, which will undoubtedly be an advantage for wine industries. However, considering the sensory repercussions, ultrasound technique seems to be more feasible than the use of microwaves.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Oliver-Simancas Rodrigo1, Alañón-Pardo1, Pérez-Coello1 and Muñoz-García1

1Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA)

Contact the author

Keywords

Ultrasounds, microwaves, red wine, oak chips, accelerated aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aroma profile evaluation in whole grape juices

Table grapes (Vitis labrusca and hybrids) are widely cultivated in Brazil [1] due to the climate, their resistance to disease and the way they are consumed and commercialized, either in-natura or for processing, producing whole juices, jams and table wines.

Influence of ‘pinotage’ defoliation on fruit and wine quality

Among the different management techniques in Viticulture, which have
been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of
the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

Analysis of mousy off-flavour wines

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.