IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Abstract

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage. In this sense, non-thermal technologies such as ultrasound or microwave waves have been evaluated to compare their effect on the release of compounds from oak wood and their influence on the aromatic profile versus the use of oak wood chips.The concentration of the main compounds released to wine during aging process by means of oak chips (7 g/L) from two species (Quercus alba and Q. robur) was monitored every 6 time points for 24 days. Results showed that concentrations of trans- and cis-whisky lactones, furfural, vanillin, syringol, eugenol and guaiacol among others increased remarkably up to 8 days of aging, after which the increase was statistically insignificant. Taking these quantities as a reference, the same wine was subjected to contact with oak chips under different ultrasounds and microwaves treatments conditions to emulate aging process in the shortest possible time. On the one hand, ultrasound technique was applied to wine in contact with oak chips with a power of 400 W during 15 min, 2 h and 12 horas, the latter applied by hourly pulses. On the other hand, microwave technique was also handled by different treatments: 900 W during 10 min, and 700 W for 10 and 20 min.Results showed that wines subjected to treatments of ultrasounds 400 W during 12 hours by pulses and microwaves with 700 W for 20 min reached similar concentrations of compounds released from oak chips as wines macerated for 8 days. However, from a sensory point of view, the ultrasound treated wines showed similar scores in aging descriptors (vanilla, spice, wood, toast…) as wines macerated with oak chips for 8 days.Therefore, both techniques can be considered to bring an accelerated aging, significantly shortening the time required for it, which will undoubtedly be an advantage for wine industries. However, considering the sensory repercussions, ultrasound technique seems to be more feasible than the use of microwaves.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Oliver-Simancas Rodrigo1, Alañón-Pardo1, Pérez-Coello1 and Muñoz-García1

1Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA)

Contact the author

Keywords

Ultrasounds, microwaves, red wine, oak chips, accelerated aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

The smoking gun of climate change in wines

In this audio recording of the IVES science meeting 2022, Antonio Graca (Sogrape, Portugal) speaks about smoke taint and climate change. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).