IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effects Of Injections Of Large Amounts Of Air During Fermentation

Effects Of Injections Of Large Amounts Of Air During Fermentation

Abstract

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation. At the same time samples were taken at inoculation (time 0), day 2, 4, 6 and after running off. Soluble solids, titratable acidity, and pH were measured in the samples according to OIV-MA-AS313-01 and OIV-MA- AS313-15 methodologies. The content of glucose- fructose, malic acid, tartaric acid, cooper, iron, glycerol, anthocyanins and catechins in musts were analyzed by commercial enzymatic kits. Phenolic composition was evaluated by tannins methylcellulose precipitation assay (1), short and large polymeric pigments total phenolics by bovine albumin precipitation (2), total phenolics by Folin-Cioacalteu (3), and low molecular weight phenolics by HPLC-DAD were analyzed (4). Color was also determined in CIELAB parameters by absorption spectra at 280, 450, 520, 570 and 630 nm by using software MSCV developed by the Research Colour Group at the University of La Rioja, and 420 nm to evaluate browning index. 

Results: Our results show significative differences mostly in phenolic evolution, as we expected the highest intensity and frequency of air injection, produced the most elevated peaks of oxygen dilution and the highest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration. For all treatments was observed the increase of phenolic compounds extraction during fermentation. The total phenolic, tannins and anthocyanins concentration were high in second place by the treatment with low intensity and low daily frequency. Formation of short and large polymeric pigments were more associated with the high frequency than the intensity, these treatments at the same time had less browning index than the other treatments associated with chemical stability in wines. These results can be associated to the oxygen treatments, although, there is clear differences associated to the temperature during the air injection, the grapes origin and phenolic extractable capacity.

Conclusions:
Contrary to some investigations of micro-oxigenation, the injection of high quantities of air or oxygen into musts has no investigated before, and its unknown the real effects in the phenolic extraction and the final stability in wine. These is an introduce to the investigation in these alternatives of overpumping musts.

References

1. Mercurio, M. D., Dambergs, R. G., Herderich, M. J., & Smith, P. A. (2007). High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format. Journal of agricultural and food chemistry, 55(12), 4651-4657.
2. Harbertson, J. F., Picciotto, E. A., & Adams, D. O. (2003). Measurement of polymeric pigments in grape berry extract sand wines using a protein precipitation assay combined with bisulfite bleaching. American journal of enology and viticulture, 54(4), 301-306.
3. Waterhouse, A. L. (2002). Polyphenolics: determination of total phenolics. On RE Wrolstad. Current protocols in food analytical chemistry, 257-326.
4. Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20(7), 618–626.
5. Gambuti, A., Picariello, L., Rinaldi, A., & Moio, L. (2018). Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging. Frontiers in Chemistry, 6(March), 1–11.
6. Laurie, F., Salazar, S., Campos, M. I., Cáceres-Mella, A., & Peña-Neira, Á. (2014). Periodic aeration of red wine compared to microoxygenation at production scale. American Journal of Enology and Viticulture, 65(2), 254–260.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Peña-Martínez Paula.A1, Catalán-Fuentes Rocio E.1 and Laurie V. Felipe1

1Universidad de Talca

Contact the author

Keywords

Phenolics, oxidation, fermentetion evolution, air injection.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Pure wine vs natural wine

S’il n’existe pas de réglementation officielle, la démarche des vins naturels prône un retour aux pratiques dites ancestrales préconisant notamment un mode d’élaboration des vins utilisant le moins d’intrants possible. Le seul autorisé reste l’anhydride sulfureux (SO2) à des doses quatre à cinq fois moins importantes que pour les vins dits conventionnels. Ce désir de renouer avec

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Analyses of a long-term soil temperature record for the prediction of climate change induced soil carbon changes and greenhouse gas emissions in vineyards

The evaluation of the current and future impact of climate change on viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in almost all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the ipcc (the physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.