IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effects Of Injections Of Large Amounts Of Air During Fermentation

Effects Of Injections Of Large Amounts Of Air During Fermentation

Abstract

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation. At the same time samples were taken at inoculation (time 0), day 2, 4, 6 and after running off. Soluble solids, titratable acidity, and pH were measured in the samples according to OIV-MA-AS313-01 and OIV-MA- AS313-15 methodologies. The content of glucose- fructose, malic acid, tartaric acid, cooper, iron, glycerol, anthocyanins and catechins in musts were analyzed by commercial enzymatic kits. Phenolic composition was evaluated by tannins methylcellulose precipitation assay (1), short and large polymeric pigments total phenolics by bovine albumin precipitation (2), total phenolics by Folin-Cioacalteu (3), and low molecular weight phenolics by HPLC-DAD were analyzed (4). Color was also determined in CIELAB parameters by absorption spectra at 280, 450, 520, 570 and 630 nm by using software MSCV developed by the Research Colour Group at the University of La Rioja, and 420 nm to evaluate browning index. 

Results: Our results show significative differences mostly in phenolic evolution, as we expected the highest intensity and frequency of air injection, produced the most elevated peaks of oxygen dilution and the highest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration. For all treatments was observed the increase of phenolic compounds extraction during fermentation. The total phenolic, tannins and anthocyanins concentration were high in second place by the treatment with low intensity and low daily frequency. Formation of short and large polymeric pigments were more associated with the high frequency than the intensity, these treatments at the same time had less browning index than the other treatments associated with chemical stability in wines. These results can be associated to the oxygen treatments, although, there is clear differences associated to the temperature during the air injection, the grapes origin and phenolic extractable capacity.

Conclusions:
Contrary to some investigations of micro-oxigenation, the injection of high quantities of air or oxygen into musts has no investigated before, and its unknown the real effects in the phenolic extraction and the final stability in wine. These is an introduce to the investigation in these alternatives of overpumping musts.

References

1. Mercurio, M. D., Dambergs, R. G., Herderich, M. J., & Smith, P. A. (2007). High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format. Journal of agricultural and food chemistry, 55(12), 4651-4657.
2. Harbertson, J. F., Picciotto, E. A., & Adams, D. O. (2003). Measurement of polymeric pigments in grape berry extract sand wines using a protein precipitation assay combined with bisulfite bleaching. American journal of enology and viticulture, 54(4), 301-306.
3. Waterhouse, A. L. (2002). Polyphenolics: determination of total phenolics. On RE Wrolstad. Current protocols in food analytical chemistry, 257-326.
4. Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20(7), 618–626.
5. Gambuti, A., Picariello, L., Rinaldi, A., & Moio, L. (2018). Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging. Frontiers in Chemistry, 6(March), 1–11.
6. Laurie, F., Salazar, S., Campos, M. I., Cáceres-Mella, A., & Peña-Neira, Á. (2014). Periodic aeration of red wine compared to microoxygenation at production scale. American Journal of Enology and Viticulture, 65(2), 254–260.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Peña-Martínez Paula.A1, Catalán-Fuentes Rocio E.1 and Laurie V. Felipe1

1Universidad de Talca

Contact the author

Keywords

Phenolics, oxidation, fermentetion evolution, air injection.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring diversified service offerings in the Spanish wine industry

The spanish wine industry stands at a crossroads, transitioning from a traditional emphasis on wine production to a landscape increasingly characterized by diversified service offerings. This paper delves into the nuances of servitization within spanish wineries, investigating the determinants of servitization and the impact of these diversified services on revenue streams. The paper posits hypotheses concerning the influence of various factors, such as winery size, location, market orientation, ownership structure, market competition, regulatory environment, market demand, firm capabilities, owner characteristics, and firm age, on the adoption of diversified service offerings in spanish wineries. The methodology involves comprehensive regression analysis to unravel the drivers of servitization within this context.

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.