IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effects Of Injections Of Large Amounts Of Air During Fermentation

Effects Of Injections Of Large Amounts Of Air During Fermentation

Abstract

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation. At the same time samples were taken at inoculation (time 0), day 2, 4, 6 and after running off. Soluble solids, titratable acidity, and pH were measured in the samples according to OIV-MA-AS313-01 and OIV-MA- AS313-15 methodologies. The content of glucose- fructose, malic acid, tartaric acid, cooper, iron, glycerol, anthocyanins and catechins in musts were analyzed by commercial enzymatic kits. Phenolic composition was evaluated by tannins methylcellulose precipitation assay (1), short and large polymeric pigments total phenolics by bovine albumin precipitation (2), total phenolics by Folin-Cioacalteu (3), and low molecular weight phenolics by HPLC-DAD were analyzed (4). Color was also determined in CIELAB parameters by absorption spectra at 280, 450, 520, 570 and 630 nm by using software MSCV developed by the Research Colour Group at the University of La Rioja, and 420 nm to evaluate browning index. 

Results: Our results show significative differences mostly in phenolic evolution, as we expected the highest intensity and frequency of air injection, produced the most elevated peaks of oxygen dilution and the highest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration. For all treatments was observed the increase of phenolic compounds extraction during fermentation. The total phenolic, tannins and anthocyanins concentration were high in second place by the treatment with low intensity and low daily frequency. Formation of short and large polymeric pigments were more associated with the high frequency than the intensity, these treatments at the same time had less browning index than the other treatments associated with chemical stability in wines. These results can be associated to the oxygen treatments, although, there is clear differences associated to the temperature during the air injection, the grapes origin and phenolic extractable capacity.

Conclusions:
Contrary to some investigations of micro-oxigenation, the injection of high quantities of air or oxygen into musts has no investigated before, and its unknown the real effects in the phenolic extraction and the final stability in wine. These is an introduce to the investigation in these alternatives of overpumping musts.

References

1. Mercurio, M. D., Dambergs, R. G., Herderich, M. J., & Smith, P. A. (2007). High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format. Journal of agricultural and food chemistry, 55(12), 4651-4657.
2. Harbertson, J. F., Picciotto, E. A., & Adams, D. O. (2003). Measurement of polymeric pigments in grape berry extract sand wines using a protein precipitation assay combined with bisulfite bleaching. American journal of enology and viticulture, 54(4), 301-306.
3. Waterhouse, A. L. (2002). Polyphenolics: determination of total phenolics. On RE Wrolstad. Current protocols in food analytical chemistry, 257-326.
4. Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20(7), 618–626.
5. Gambuti, A., Picariello, L., Rinaldi, A., & Moio, L. (2018). Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging. Frontiers in Chemistry, 6(March), 1–11.
6. Laurie, F., Salazar, S., Campos, M. I., Cáceres-Mella, A., & Peña-Neira, Á. (2014). Periodic aeration of red wine compared to microoxygenation at production scale. American Journal of Enology and Viticulture, 65(2), 254–260.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Peña-Martínez Paula.A1, Catalán-Fuentes Rocio E.1 and Laurie V. Felipe1

1Universidad de Talca

Contact the author

Keywords

Phenolics, oxidation, fermentetion evolution, air injection.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

La zonazione viticola rappresenta un importante strumento di indagine per valutare e interpretare le potenzialità produttive e qualitative di un territorio. Con l’obiettivo di studiare come l’ambiente influisca sulla qualità dell’uva nell’areale di Brisighella, sono stati monitorati, nelle annate 2007, 2008 e 2009, 14 vigneti per la varietà Albana e 38 per la varietà Sangiovese, rappresentativi di una area vitata di circa 1000 ha.

Description of the effect of the practical management in the characterization of « terroir effect »

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential.

Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Cell death in Vitis vinifera L. berries late in ripening and berry shrinkage (loss of mass) can decrease yield and reduce grape quality in cultivars such as Cabernet Sauvignon

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.