IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Aromas of Riesling wine: impact of bottling and storage conditions

Aromas of Riesling wine: impact of bottling and storage conditions

Abstract

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace. The wine bottles were stored in warm (~25 °C) or cool (~15 °C) conditions for 6-24 months.The main families of Riesling varietal aromas are monoterpenes and C13-norisoprenoids. The central question of this study was to investigate their transformations under different bottling conditions: reductive and oxidative. In particular, how to preserve fruity/floral monoterpenes such as linalool and to limit the formation of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN).GC-MS analysis showed that the content of linalool was decreasing during the wine storage, and higher temperature induced its faster degradation and the formation of linalool oxides. Surprisingly, reductive conditions (higher free SO2 level in wine and CO2 in the headspace) had no considerable impact on the preserving of linalool and the formation of its oxides.TDN is important C13-norisoprenoid, which is formed during the aging of Riesling wine. TDN has kerosene/diesel aromas that add complexity to the wine bouquet, but become undesirable when its content becomes high. Therefore, enological and other strategies for managing TDN in wine are of interest. There are various studies, which discuss the influence of oxygen on the formation or degradation of TDN in wine [4,5]. As shown in our investigation, the TDN content is not strongly related to the oxidative or reductive conditions in wine, and was not significantly influenced by the studied bottling parameters. The main factor inducing the TDN formation was elevated storage temperature.In addition, secondary wine aromas and low molecular weight sulfur compounds were analyzed by GC. Also a sensory analysis was performed.In conclusions, the lower SO2 level in wine and higher oxygen content in the headspace had a limited impact on the varietal and secondary aromas of Riesling wine. However, the development of oxidative aromas was more intense in the wines under these “oxidative” bottling conditions. As a result, these wines were distinguished in sensory analysis as more oxidized already after 6 months of storage in warm conditions.

References

[1] Giuffrida de Esteban, M.L.; Ubeda, C.; Heredia, F.J.; Catania, A.A.; Assof, M.V.; Fanzone, M.L.; Jofre, V.P. Impact of Closure Type and Storage Temperature on Chemical and Sensory Composition of Malbec Wines (Mendoza, Argentina) during Aging in Bottle. Food Res. Int. 2019, 125, 108553, doi:10.1016/j.foodres.2019.108553.
[2] Cejudo‐Bastante, M.J.; Hermosín‐Gutiérrez, I.; Pérez‐Coello, M.S. Accelerated Aging against Conventional Storage: Effects on the Volatile Composition of Chardonnay White Wines. J. Food Sci. 2013, 78, C507–C513, doi:https://doi.org/10.1111/1750-3841.12077.
[3] Tarasov, A.; Garzelli, F.; Schuessler, C.; Fritsch, S.; Loisel, C.; Pons, A.; Patz, C.-D.; Rauhut, D.; Jung, R. Wine Storage at Cellar vs. Room Conditions: Changes in the Aroma Composition of Riesling Wine. Molecules 2021, 26, doi:10.3390/molecules26206256.
[4] Silva Ferreira, A.C.; Guedes de Pinho, P. Nor-Isoprenoids Profile during Port Wine Ageing—Influence of Some Technological Parameters. Anal. Chim. Acta 2004, 513, 169–176, doi:10.1016/j.aca.2003.12.027.
[5] Skouroumounis, G.K.; Kwiatkowski, M.J.; Francis, I.L.; Oakey, H.; Capone, D.L.; Peng, Z.; Duncan, B.; Sefton, M.A.; Waters, E.J. The Influence of Ascorbic Acid on the Composition, Colour and Flavour Properties of a Riesling and a Wooded Chardonnay Wine during Five Years’ Storage. Aust. J. Grape Wine Res. 2005, 11, 355–368, doi:10.1111/j.1755-0238.2005.tb00035.x.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Tarasov Andrii1, Garzelli Frederico1, Schuessler Christoph1, Fritsch Stefanie2, Platz Claus3, Rauhut Doris2 and Jung Rainer1

1Department of Enology, Hochschule Geisenheim University
2Department of Microbiology and Biochemistry, Hochschule Geisenheim University
3Department of Beverage Research, Hochschule Geisenheim University

Contact the author

Keywords

Riesling wine, aging, TDN, oxidation, sulfur dioxide

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Chemical and sensory quality, environmental sustainability, and consumer acceptance of South Tyrolean wines produced from hybrid grape varieties

Disease-resistant hybrid grape cultivars (DRHGCs) are hybrids of Vitis vinifera varieties with other Vitis species, and they are endowed with greater resistance to specific fungal diseases, enabling a potential reduction in the application of pesticides in the vineyard.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.