IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Abstract

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.
Recently a highly concentrated L. plantarum starter culture proofed not only being able to induce and finish a malolactic fermentation before the end of alcoholic fermentation, when applied in co-inoculation in high pH red wines, but also to be a tool for high acidic white wines, characterized by a low pH (> pH 2.95) and high malic acid concentrations. Due to its good alcohol tolerance (up to 15 %vol) it can be applied in co-inoculation as well as in sequential inoculation.
An inoculation ratio could be used to control the amount of malic acid to be degraded to achieve both: a partial or a complete degradation of malic acid. Since this strain does not metabolize citric acid, no diacetyl is formed and thus the variety typicity is maintained and wine acidity is harmonized. With the partial or complete removal of the malic acid, the complex double salt or in some cases even necessary extended double salt deacidification could be circumvented. This also avoided calcium input and eliminated the resulting problems with tartar stabilization.
For use in sequential inoculation, a simple MLF pretest can be used to determine the success of an MLF with ML-Prime in a short time (maximum 7 days) and to provide exact information which amount of malic acid will be degraded. The results can be transferred directly into practice.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Krieger-Weber Sibylle1

1Lallemand Office Korntal-Münchingen

Contact the author

Keywords

Malolactic fermentation; Lactiplantibacillus plantarum; facultative hetero-fermentative; starter cultures; diacetyl.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Riesling as a model to irrigate white wine grape varieties in arid climates

Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

Evaluating alternatives to cold stabilization in wineries: the use of carboximethyl cellulose, potassium polyaspartate, electrodialysis and ion exchange resins – the results after one year in the bottle

The tartaric stabilization of wines before bottling to avoid the precipitation of tartaric acid salts is an important and common step during wine production. The presence of precipitated salt crystals in bottle wines is detrimental for their quality and even a legal issue in some countries. Cold stabilization is the most common stabilization treatment. Although it has been shown to be effective, it has some significant disadvantages, mainly regarding losses of color and aromas and its high cost. Therefore, other products and methodologies are being introduced in the wineries for the replacement of this process. Some of these new techniques involve the reduction of the ions causing the insolubilization of tartaric acid while other are based in the formation of protective colloids or the inhibition of the crystallization of salts. In this study, white, rosé and red wines have been treated with carboxymethylcellulose, potassium polyaspartate and an ion exchange resin. The tartaric stability of the wines, together with the oenological, chromatic and sensory characteristics were studied after the wines had been stored during one year in the bottle. The results indicate that the use of carboxymethyl cellulose and potassium polyaspartate maintained the best the sensory and chromatic characteristics and the wine stability of the wines in comparison with an untreated control wine.

Main viticultural soils in Castilla – La Mancha (Spain)

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soil