IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Abstract

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.
Recently a highly concentrated L. plantarum starter culture proofed not only being able to induce and finish a malolactic fermentation before the end of alcoholic fermentation, when applied in co-inoculation in high pH red wines, but also to be a tool for high acidic white wines, characterized by a low pH (> pH 2.95) and high malic acid concentrations. Due to its good alcohol tolerance (up to 15 %vol) it can be applied in co-inoculation as well as in sequential inoculation.
An inoculation ratio could be used to control the amount of malic acid to be degraded to achieve both: a partial or a complete degradation of malic acid. Since this strain does not metabolize citric acid, no diacetyl is formed and thus the variety typicity is maintained and wine acidity is harmonized. With the partial or complete removal of the malic acid, the complex double salt or in some cases even necessary extended double salt deacidification could be circumvented. This also avoided calcium input and eliminated the resulting problems with tartar stabilization.
For use in sequential inoculation, a simple MLF pretest can be used to determine the success of an MLF with ML-Prime in a short time (maximum 7 days) and to provide exact information which amount of malic acid will be degraded. The results can be transferred directly into practice.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Krieger-Weber Sibylle1

1Lallemand Office Korntal-Münchingen

Contact the author

Keywords

Malolactic fermentation; Lactiplantibacillus plantarum; facultative hetero-fermentative; starter cultures; diacetyl.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

The use of bees as pollinators in vine varieties with physiologically female flowers (Picolit, Bicane, Ceresa, Moscato rosa, etc.) (Cargnello, 1983) and as bio-indicators for biodiversity and environmental sustainability is well-known. Furthermore, there are interests in: 1-a. Making the viticulture of Belluno (Province of Veneto in North-eastern Italy, which is also famous for the Dolomites -a UNESCO World Heritage-) regain the socioeconomic role which it is entitled to and which it had got in its past by aiming at the enhancement of local grape variety in harmony with others, for example with the neighboring area of the Conegliano and Valdobbiadene Prosecco Superiore DOCG; 2-a. Maintaining and further improving the important natural and healthy environment of Belluno, and making its territory and the “lookout” means of the environmental sustainability, including its vineyards, even more naturally original and sustainable 4.1C.

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Cultures des vignobles en forte pente: possibilités de mécanisation. Effet de l’exposition et de l’orientation des rangs

Plus de la moitié du vignoble suisse (14’000 ha) est situé sur des coteaux en forte pente (> 30%). Dans certains vignobles, la pente naturelle du terrain a été réduite par la construction de terrasses soutenues par des murs.