IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Abstract

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

In this study, we aim to explain the wine permissiveness by identifying chemical markers specifically present in permissive wines or, on the contrary, in resistant ones. To achieve this goal, we will analyze the metabolite profiles of red wines coming from different châteaux in Bordeaux and displaying different permissiveness, using targeted and untargeted metabolic profiling by UHPLC-UV-HRMS and 1H-NMR. A microbiological study measuring the growth of a couple of Brettanomyces strains will also be conducted to create and assess a permissiveness score for each wine. With the help of unsupervised statistical analyses, these results will be combined in order to draw correlations between the chemical markers and the score obtained by each wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Miranda Julie1, Dols-Lafargue Marguerite1 and Rouger Caroline1

1Univ. Bordeaux, ISVV, UMR Œnologie EA 4577, UMR 1366 INRAE

Contact the author

Keywords

Untargeted Metabolomics, Brettanomyces bruxellensis, UHPLC-UV-HRMS, Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Development of breeding of PIWI varieties in the Czech Republic

Context and purpose of the study. The Czech Republic is one of the most important grape growers of PIWI varieties in the Europe, as the total area planted with PIWI varieties is almost 1000 ha.

What strategies do wine firms adopt to integrate CSR into their activities? An analysis among Italian wineries

Corporate Social Responsibility (CSR), as defined by the European Commission, is a strategic framework through which companies integrate social, environmental, and economic sustainability into their operations (European Commission, 2001).

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.