IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How to transform the odor of a white wine into a red wine? Color it red!

How to transform the odor of a white wine into a red wine? Color it red!

Abstract

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines. A white wine (Scheurebe) was presented a) in its original color and b) colored red by odorless food coloring. In addition, c) a red wine (a cuvée of pinot noir and dornfelder) was presented. In order to investigate the cause of the expected shift of the odor ratings for the red-colored white wine into the direction of a red wine profile, the three wines were additionally presented in black glasses, in which the color of the wine was not visible. This provided odor ratings uninfluenced by the color of the wines. We expected these ratings to show that some red wine odors are present in the white wine, but less intensely than in the red wine. As expected, the data showed that red wine odors were perceived more intensely in red-colored white wine than in uncolored white wine, compatible with the results by Morrot et al.The results also support the more general form of the hypothesis that an odor is enhanced by congruent colors and attenuated by incongruent colors. Additionally, the odor ratings of the wines presented in black glasses showed that some red wine aromas were present in the white wine, but less intense than in the red wine. We propose that the results can be understood in terms of attentional focusing. Numerous olfactory components are present in wine, some of them in red wines as well as in white wines. If a white wine is colored red, odors typical for red wine are perceived more intensively than in the uncolored white wine, because the red color directs attention to odor components associated with red wine. Selective attention could thus be an explanation for the influence of color on odor perception.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Twistel Gabriele1, Von Castell Christoph1 and Oberfeld-Twistel Daniel1

1Johannes Gutenberg-Universität Mainz, Department of Psychology

Contact the author

Keywords

sensory analysis, psychology, odor, experiment, color

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.