terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Applications of a novel molecular phenology scale to align the stages of grape berry development

Applications of a novel molecular phenology scale to align the stages of grape berry development


Context and purpose of the study: Phenology scales widely adopted by viticulturists (i.e., BBCH or modified E-L systems) are classification tools that describe seasonal and precisely recognized stages of fruit growth and development based on specific descriptors such as visual/physical traits or easy-to-measure compositional parameters. Although some stages can be unequivocally described (e.g., fruit set, veraison), defining comparable developmental stages, from berry formation to full ripening, for grapes of the same cultivar when grown in different conditions or for grapes of different cultivars can be challenging. In this work, molecular-based information was accessed to build a Molecular Phenology Scale (MPhS), suitable to map the ontogenic development of the fruit with high precision.

Material and methods: We exploited the transcriptomic data generated from grape berries of different cultivars sampled weekly from vines grown in the same location over consecutive vintages and focused on conserved annual dynamics rather than on the biological significance of the expression program. The statistical pipeline that was applied consisted of an unsupervised learning procedure yielding an innovative combination of semiparametric, smoothing, and dimensionality reduction tools. By interpolating the transcriptomic samples dispersed in a three-dimension Principal Component Analysis (PCA) we built a 30-stage MPhS that was then used to align samples from several grape berry transcriptomic datasets featuring comparisons between different treatments or growing conditions. 

Results: The transcriptomic distance between fruit samples was precisely quantified by means of the MPhS that also enabled to highlight the complex dynamics of the transcriptional program over berry development computing the variation rate of the MPhS stages by time. The performance of the scale was assessed projecting both RNA-seq and microarray transcriptomic samples onto the MPhS. The results allowed to align samples on the MPhS and to highlight differences related to variables like the grape variety, the cultivation site, the vintage, or applied treatments e.g., cluster thinning, defoliation, water limitation and temperature regimes.

The MPhS allowed aligning time-series fruit samples and proved to be an advanced method for defining the stage of grape berry development with higher detail compared to classic time- or phenotype-based approaches.


Publication date: June 15, 2023

Issue: GiESCO 2023

Type: Article


Giovanni Battista TORNIELLI1 *, Sara ZENONI1, Marco SANDRI1, Paola ZUCCOLOTTO2, Marianna FASOLI1

1Department of Biotechnology, University of Verona, 37134 Verona, Italy
2Big & Open Data Innovation Laboratory, University of Brescia, 25122 Brescia, Italy

Contact the author*


molecular phenology, berry development, phenological scales, transcriptomics, growth stage


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied.

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.