terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels

The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels


Context and purpose of the study – Insufficient levels of malate and lack of acidity in commercial grape cultivars (V.vinifera) hinders the quality of fruit grown in warm climates. Conversely, excessive levels of malate and sourness in wild Vitis grape, leads to unpalatable fruit and complicates the introgression of valuable disease resistant alleles through breeding. Nonetheless, albeit decades of research, knowledge regarding the molecular regulation of malate levels in grape remains limited.
While malate dissimilation is a hallmark of grape ripening, it was found to be absent or limited in wild Vitis fruit (riparia, cinerea). Hence, these genotypes serve as unique resources to deepen our understanding of malate regulation, with the overarching goal of controlling fruit acidity by breeding.
Our research aimed to (i) Identify genetic loci tightly associated with fruit malate levels in interspecific families, and (ii) highlight differences in metabolism and gene expression, associated with contrasting malate behavior between wild and commercial genotypes.

Material and methods – QTL mapping was performed using a novel set of amplicon-based markers (rhAmpSeq) and six years of phenotyping of a complex interspecific F1 family with strong and stable variation in malate at ripeness. In addition, a comparative RNAseq and primary metabolite profiling was performed during fruit development in riparia and cinerea accessions, and commercial vinifera cultivars.

Results – Three significant QTL for ripe fruit malate on chromosomes 1, 7, and 17, accounted for over two-fold and 6.9 g/L differences, and explained 40.6% of the phenotypic variation. QTL on chromosomes 7 and 17 were stable in all and in three out of five years, respectively. Lack of malate degradation in wild genotypes was associated with higher fruit respiration rates, higher levels of amino acids, TCA and fermentation metabolites, and higher expression of their corresponding genes, some of which positioned within the identified QTL in the studied population.
The developmental pattern and inter-specific differences in the expression of genes presumably  involved in malate biostynthesis, degradation, and transport, allowed us to highlight major candidate genes involved in malate regulation across Vitis species. These results advance current knowledge regarding the regulation of malate at the mechanistic and metabolic levels, and highlight genetic markers and candidate genes associated with grape acidity.


Publication date: June 20, 2023

Issue: GiESCO 2023

Type: Article


Noam Reshef1α*, Avinash Karn2, Noga Sikron3, Al Shoffe Y2, David C. Manns4, Anna Katharine Mansfield4, Bill Miller2, Chris Watkins2, Lance Cadle-Davidson5, Bruce Reisch2, Aaron Fait3, Jason Londo5, and Gavin L. Sacks1

1 Department of Food Science, Cornell University, Ithaca, NY, USA
2 Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
3 Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel
4 Department of Food Science, Cornell AgriTech, Geneva, NY, USA
5 USDA-ARS, Grape Genetics Research Unit, Geneva, NY, USA

α Current address: Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Israel

Contact the author*


fruit acidity, wild Vitis, marker-assisted breeding, rhAmpSeq, vacuolar transport, climate-change adaptation, disease resistance


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).