terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Techniques to study graft union formation in grapevine

Techniques to study graft union formation in grapevine

Abstract

Context and purpose of the study – Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.

Material and methods – The development of grafts of different scion/rootstocks of grapevine was studied during the first few months after grafting. The quantity of callus produced (fresh and dry mass) and the mechanical strength of the graft union were quantified in five scion/rootstock combinations 5-6 weeks after grafting. The scion/rootstock combinations studied were homografts of the typical grapevine scion genotype, Vitis vinifera cv. Pinot Noir (PN), and homografts of two rootstocks, V. riparia cv. Gloire de Montpellier (RGM) and the V. berlandieri x V. rupestris cv. 140 Ruggeri, and two hetero-grafts, PN/RGM and PN/140Ru (n=27). We also used x-ray tomography to study functional xylem vessels by labelling functional vessels with the contrast agent Iohexol. This protocol was optimised in three omega grafts of V. vinifera cv. Tempranillo grafted onto the rootstock V. berlandieri x V. rupestris cv. 110 Richter. Grafts with solid and resistant graft unions were selected after one year of growth in a nursery and grown in a greenhouse until approximately 10 leaves had appeared to drive the movement of iohexol in the xylem. Scans were analyzed with the computer programs Fiji/ImageJ and Imaris.

Results – Equipment to quantify the mechanical strength of the graft union was developed and tested on different scion/rootstock combinations to determine the suitability of this technique to quantify graft union development. The quantity of callus produced at the graft interface is different between the tested genotypes and was not necessarily related to the mechanical strength of the graft union. Three-dimensional reconstruction of x-ray tomography images allowed us to visualize the vessel connections between the scion and rootstock, and this knowledge will be used to develop protocols to quantify xylem vessel connections using high-throughput methods.                   

Significance of the study – Difficulties in quantitatively phenotyping the different steps of the graft union formation have considerably delayed the identification of the genetic determinants of grafting success in all the plant species. In this study, we are developing various quantitative methods to overcome this bottleneck with the objective to be able to characterize the genetic mechanisms involved in graft union development in grapevine.

DOI:

Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article

Authors

Camboué1, G. Loupit1, A. Janoueix1, J.-P. Tandonnet1, M. Morel1, E. Marguerit1, F. Cordelières3, J. Teillon3, C. Moisy2, G. Mathieu2, A.-S. Spilmont2, S. J. Cookson1*

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, Le Grau-du-Roi, France
3Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France

Contact the author*

Keywords

grapevine, xylem vessels, grafting, callus, mechanical strength, tomography-RX

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.