terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties


High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand (Jones and Sutherland., 1991). Nevertheless, this response negatively impacts plant functioning, as it decreases photosynthesis and raises the leaf temperature (Tuzet et al., 2003). This increase in temperature is due to a decrease in energy loss by evaporative cooling. In extreme cases, this increase can induce leaf burning symptoms and lead to leaf or entire plant mortality (Webb et al., 2010).

In the context of global warming, the occurrence of extreme heatwaves events is expected to increase in almost all the vineyard areas. These events can cause major risks for the perennity of this cropping system. In this context there is a need to develop new varieties more adapted to high temperatures. For instance in the south of France in June 2019 a major heatwave was observed with air temperature higher than 45°C. Previous analyses made during this period, showed high genotypic variability in the sensitivity to this leaf burn symptoms in a core collection of varieties that was grown in Montpellier (South of France).

To apprehend the physiological determinants explaining these genotypic differences, it is necessary to understand the factors that affect leaf temperature. Leaf temperature results from the leaf energy balance. This energy balance depends on the amount of solar radiation intercepted by the canopy and on the ability of the leaf to transfer this energy through evapotranspiration. In that context, there exist two leverages that limit this increase in leaf temperature. First, reducing the amount of light intercepted and secondly maintaining stomatal aperture even under high temperature. Previous studies in grapevine showed high genotypic variability in stomatal behavior under water deficit in grapevine (Coupel-Ledru et al., 2014). Conversely, the studies on the response to temperature are more scarce. Regarding the amount of light intercepted, plant architecture plays a major role in light capture (Louarn et al., 2008). From the multitude of architectural traits: leaf shape and size, petiole length, and leaf 3D orientation significantly influence the efficiency of radiation interception (Falster and Westoby, 2003; Valladares and Brites, 2004).

A large genotypic variability in architectural traits was also observed in many plants (Segura et al., 2007 in apple). However, no study investigated the genotypic variation in architectural traits in grapevines and their potential impact on leaf functioning. In grapevine, a previous study showed intra-plant variability in leaf angles with respect to the training systems (Mabrouk et Carbonneau, 1997). However, this study did not consider any genotypic variability. Consequently, the definition of new architectural and functional ideotypes to face hatewaves in vineyards is a particularly relevant research topic.


Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article



UMR LEPSE, Univ Montpellier, INRAE, Institut Agro-Montpellier, Montpellier, France

Contact the author*


plant architecture, leaf orientation, energy balance, leaf temperature, genotypic variability


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied.

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.