terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Abstract

Context and purpose of the study – Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Material and methods – At the leaf level, N content and its relative position within a shoot were measured along with the proximal hyperspectral reflectance (350nm-2500nm) from ‘Flame Seedless’ vines grown in pots as well as ‘Solbrio’ vines in a vineyard. At the canopy level, leaf nitrogen concentration, and hyperspectral images (400nm-1000nm) of ‘Valley Pearl’ vines were collected using a hyperspectral camera mounted on an uncrewed aerial vehicle. At leaf and canopy levels, we evaluated the N retrieval performance of several spectral analytics approaches, including empirical data-driven models, a physical-based model (radiative transfer model), and hybrid models. 

Results – At the leaf level, the performance of data-driven approaches using the entire 350-2500 nm spectrum (chemometrics and machine learning) outperformed (R2=0.76-0.78) the use of vegetation index, physical-based modeling, and hybrid approaches. However, collecting and analyzing hyperspectral data within visible, near-infrared, and shortwave infrared is unrealistic for large-scale monitoring. Protein, one of the variables retrieved by a physical-based approach, showed high potential to be used as a predictor of N content because protein, unlike chlorophyll, remained consistently correlated with N content regardless of leaf age. At the canopy level, the performance of data-driven and hybrid approaches was competitive (R2=0.61-0.69) except for the combination of physical-based parameters and random forest regression (R2=0.50). However, the performance of N content retrieval models varies widely across datasets, and it is not yet clear what factors determine the performance of models. Further data processing and calibration to extract more reliable spectral features from hyperspectral images are required to scale N retrieval from the leaf level to the canopy level by leveraging the knowledge acquired at the leaf level analysis.

DOI:

Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article

Authors

Yuto Kamiya1,2, Alireza Pourreza1*,Sirapoom Peanusaha1, Matthew W. Fidelibus3,4

1Department of Biological and Agricultural Engineering, University of California Davis, 3042 Bainer Hall, Davis, CA, 95616, United States
2Kubota Tractor Corporation, 1000 Kubota Drive, TX, 76051, United States
3Kearney Agricultural Research and Extension Center, 9240 S. Riverbend Avenue, Parlier, CA 93648, USA
4Department of Viticulture and Enology, University of California, Davis, 595 Hilgard Ln, Davis, CA 95616, USA

Contact the author*

Keywords

grapevine, nitrogen retrieval, hyperspectral, radiative transfer model, unmanned aerial vehicle, proximal hyperspectral

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Climats: a model of terroir-based winegrowing recognized by UNESCO

In Burgundy, a climat has nothing to do with the weather but accurately designates a named vine plot, often centuries-old, which produces a singular wine. This wine is the combination of history, the natural environment (relief, type of soil, exposure to the sun), a grape variety and know-how going back thousands of years. The grapes of each climat are harvested separately and the wine is made from a single grape variety and has a unique name featured on the bottle. Romanée conti, clos de vougeot, montrachet, musigny, corton…

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Emosensory profile and chemical characterization of wine vinegar from the Douro and Rioja demarcated regions

Wine vinegars have a tangy flavor and are versatile in cooking. They’ve been used since the neolithic period and are now used as microbial inhibitors and acidifiers. They’re low in calories, have antioxidants, and have a long shelf life, but quality may decrease after opening. The objective of this study focuses on the physical-chemical, sensory, and emotional characterization of wine vinegar samples from the douro demarcated region and la rioja. In total, 22 samples of wine vinegar were analyzed at the time of opening.

Where the sky is no limit – the transformation of wine marketing through text-to-video generation AI models

The introduction of ai-driven tools in digital content creation represents a significant shift in the landscape of marketing, particularly for industries reliant on rich visual storytelling such as the wine sector. The development of ai models like openai’s sora, runway’s gen-2 or google’s lumiere, which can generate realistic video content from textual descriptions, offers promising new avenues for enhancing brand narrative and consumer engagement. This research explores the potential of text-to-video (t2v) ai models to revolutionize wine marketing by creating dynamic, engaging content that captures the essence of vineyards and their products without the need for traditional video production processes.

A century of evolution of the rules relating to grape varieties  in the regulation of French wine AOCs

To characterize a wine, the most frequently used criteria describe its color, its origin, the grape varieties from which they come, or even for white wines its residual sugar content (dry, semi-dry, sweet). In france, the system of appellations of origin set up in 1919 was initially based solely on the notoriety and origin of the wines. But given the unfavorable consequences that this lack of details generated, the public authorities quickly integrated in 1927 into the “capus” law criteria for access to designations of origin, relating to the specific characteristics of the soils of the vineyards and the grape varieties used, in particular exclusion of interspecific hybrid varieties. In 1935 the creation of the aoc system confirmed the interest in precisely defining all the production conditions that must be implemented to be able to claim the benefit of an aoc, and grape varieties were an essential condition for acquisition.