terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Active thermography to determine grape bud mortality: system design and feasibility

Active thermography to determine grape bud mortality: system design and feasibility

Abstract

Context and purpose of the study – Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.

Material and methods – An active thermographic system was developed by integrating a thermal camera, heating stimulation, and sample holder. A custom computer program was developed to synchronize the camera and heating unit to acquire a thermal image sequence of a grapevine cane under a predefined heating stimulation. The heating stimulation included an artificial heating phase using a set of heating lamps and a natural cooling phase. Regions of interest (ROIs) were selected for grape buds to extract thermal responsive curves between damaged and healthy buds.

Results – Results demonstrate that significant differences were observed in thermal responsive curves between damaged and healthy buds for all five representative cultivars used in this study. This lays a solid foundation to further establish classification models to differentiate grape buds with different mortality status effectively.

DOI:

Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article

Authors

Guangxun ZHAI1, Justine VANDEN HEUVEL 2, Steven LERCH 2, Yu JIANG2*

1School of Electrical and Computer Engineering, Cornell University, USA
2Horticulture Section, School of Integrative Plant Science, Cornell University, USA

Contact the author*

Keywords

pulsed phase thermography, grape bud status, non-destructive detection, grapevine pruning

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied.

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

The forchlorfenuron (CPPU) application is recommended in table-grape after fruit-set to boost berry sizing, albeit growers also apply CPPU during pre-flowering with controversial advantages. We examined the effect of single (BBCH 15) and double (BBCH 15 and 57) CPPU applications (2.25 mg/L a.s.) in a commercial vineyard. At each time, 75-100 bunches belonging to 6-9 vines were sprayed, and compared with unsprayed (CTRL). Leaf stomatal conductance (gs), cluster stem diameter and length were measured. At harvest, 25 berries/repetition were sampled for chemical composition, BSN incidence was counted (N° necrotic laterals/10 cm of stem) in 40 bunches/repetition. To test the role of air VPD on mineral composition, at BBCH 77, 50 CTRL clusters were bagged to induce a low VPD.