terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Monitoring of grapevine stem potentials with an embedded microtensiometer

Monitoring of grapevine stem potentials with an embedded microtensiometer


Context and purpose of the study – Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance.  Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable.  Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making  (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level. 

Material and methods – We have developed a microchip microtensiometer sensor (5×5 mm) housed in a cylindrical probe that is connected to a datalogger or to a dedicated logger with wireless communication and power module.  The chip is a MEMS (microelectromechanical systems) microfluidic device with the same measurement principle as the classic soil tensiometer, but it operates over a range of more than 50 bars. The sensor is embedded into the trunk of vines and continuously monitors stem water potential. With the wireless logging, real-time monitoring of stem potentials is available online. Testing in field grown grapevines has been done over several years and compared well to pressure chamber measurements of stem potential.

Results – Field tests with embedded sensor probes in vineyards demonstrated continuous measurements over several months under a range of weather and water stress levels.  Pressure chamber readings of stem potential in the monitored vines were well correlated to the sensor output. Though a sensor installation is recommended for one growing season, multiple years of measurement have been found.  Results have been most consistent with diffuse porous woody species with very small vessels. Sources of variability in the success of the sensor in grape stems are not clear, but appears to relate to the inherent variability in grape stems and possibly to embolisms of very large vessels. A sensor version with a much smaller installation hole for young vines and small stems has been developed and is being tested with promising results.  This precision data on plant water stress will support precision water management, and will support new understanding of plant responses to water and environment.  The microtensiometer sensors are available commercially by FloraPulse Co.


Publication date: June 22, 2023

Issue: GiESCO 2023

Type: Article


Alan N. LAKSO1,2*, Michael SANTIAGO2, Maryrose LUND2, Abraham D. STROOCK2,3

1Horticulture Section, School of Integrative Plant Sciences, Cornell University Agritech, Geneva, NY 14456 USA
2FloraPulse Co., 720 Olive Drive Suite E, Davis CA, 95618  USA
3School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA  

Contact the author*


water relations, sensors, stem water potential, irrigation management, precision management


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.