terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

Abstract

Context and purpose of the study – The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.

Material and methods – In 2020 and 2021, mature grapevines grown in a vineyard in Coopersburg (PA, USA) were exposed to different population densities of adult SLF ranging from 0-15 insects/shoot for about 30 days during the fruit ripening period. In 2020, we used 16 Riesling (Vitis vinifera) vines, while in 2021, 10 Cabernet Franc (Vitis vinifera) and 10 Noiret (Vitis hybrid) vines were used. All clusters per vine were harvested and fermented in triplicate as microvinifications in 50 mL centrifuge tubes. Wine volatile composition was analyzed using HS-SPME-GC-MS and XCMS Online was used to identify metabolite features (e.g., m/z at definite retention times corresponding to potential compounds). Compounds were identified using spectral data and the NIST spectral database and confirmed by authentic standards.

Results – Using an untargeted metabolomics approach, we identified 289, 231, and 73 features in Riesling, Cabernet Franc, and Noiret wines, respectively, that were significantly correlated to SLF infestation density. These features were used to identify 14 compounds in Cabernet Franc wines, 12 in Riesling wines, and 5 compounds in Noiret wines that were affected by prolonged SLF phloem-feeding. Most of the compounds identified thus far are fermentation-derived volatile esters and alcohols, suggesting that SLF phloem-feeding may be predominantly affecting wine volatile composition by altering primary fermentation dynamics. This may be a consequence of reduced fruit sugar accumulation, as juice total soluble sugars tended to decrease with increasing SLF infestation density for all 3 varieties. Additionally, quantification of the concentrations of selected grape-derived volatiles important for Riesling varietal character (e.g., linalool) indicated no relationship with SLF infestation density. While preliminary, these results suggest that SLF-mediated effects on wine volatile chemistry may primarily be a consequence of lowered fruit resource allocation and altered fermentation dynamics, at least within this study.   

DOI:

Publication date: June 22, 2023

Issue: GiESCO 2023

Type: Article

Authors

Andrew HARNER1*, Suraj KAR1,2, Zeke WARREN1, Misha KWASNIEWSKI1, Michela CENTINARI1

1Penn State University, University Park, PA 16802, USA
Current Address: 2Oregon State University, Corvallis, Oregon, USA

Contact the author*

Keywords

invasive pest, untargeted metabolomics, wine volatile composition

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Effects of water deficit on secondary metabolites in grapes and wines

In this video recording of the IVES science meeting 2021, Simone D. Castellarin (University of British Columbia, Wine Research Center, Wine Research Centre, Vancouver, Canada) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

VitExpress, an open interactive transcriptomic platform for grapevine

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.

Evaluation of methods used for the isolation and characterization of grape skin and seed, and wine tannins

Validation of the phloroglucinolysis and RP-HPLC method showed selectivity and repeatability within acceptable limits for all investigated matrices. Recovery of polymeric phenols by SPE was also acceptable.