terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Abstract

Context and purpose of the study

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions. The present study documents the effects on grape maturation, yield parameters and on grapevine water status when a substantial portion of the upper canopy is eliminated before and after veraison. Specifically, the relevance of manipulating the leaf-to-fruit ratio is evaluated for its potential to adapt grapevine production to warmer and dryer conditions emerging with climate change.

Material and methods

Six treatments which modified the leaf-to-fruit-ratio through cluster thinning or apical leaf removal were applied on two vineyard plots of Pinot N. and Chardonnay in Burgundy from 2020 to 2023. The percentage of veraison was measured from the onset of veraison until its end. The number of clusters and the yield of each vine were documented at harvest. A random sampling of each experimental unit was used to determine berry weight and to conduct Fourier transform infrared spectroscopy analysis as well as δ13C isotopic analysis.

Results

Pre-veraison apical leaf removal delayed the date of mid-veraison by 4 to 8 days on average when compared to the control. Apical leaf removal significantly decreased water deficit during grapevine ripening for both cultivars in all three years: δ13C values decreased from 0.95 ‰ (Chardonnay, 2020) to 1.48 ‰ (Chardonnay, 2022), while significantly limiting the incidence of heat damage for both cultivars in 2020.  Apical leaf removal decreased TSS content [potential alcohol level] and pH, with the amplitude and statistical significance of reduction varying according to vintage and cultivar. Our results confirm on CV Chardonnay and Pinot N, the interest of apical leaf removal to adapt to climate change.

DOI:

Publication date: July 7, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Steven UPTON1,2, Camille BOSSUAT3, Sebastien NICOLAS3, Mario REGA1, Alex CHAUGNY1, Laurence NORET4, Catinca GAVRILESCU1, Anne-Lise SANTONI1, Olivier MATHIEU1, Hervé ALEXANDRE3,4, Benjamin BOIS1,3*

1Biogéosciences UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
2ISVV Bordeaux Sciences Agro, Université Bordeaux, 1 Cours du Général de Gaulle, 33170 Gradignan, France
3IUVV, Université Bourgogne-Franche-Comté, 2 Rue Claude Ladrey, 21000 Dijon, France
4PAM UMR A 02.102, Université Bourgogne Franche-Comté, AgroSup Dijon, France

Contact the author*

Keywords

grapevine, Pinot noir, Chardonnay, climate change, Exposed Leaf Area, Leaf-to-fruit Ratio, grape ripening, water status, apical leaf removal

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].