terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Abstract

Context and purpose of the study – Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted. An array of physiological (water potential, leaf water content, stomatal conductance, chlorophyll content), biochemical and qualitative indices were monitored during successive developmental stages (BBCH-75, 85, 87, 89). Harvested grapes were additionally monitored for their aroma profile with the employment of GC-MS, while must was analyzed using FT-NIR and E-nose techniques.

Material and methods – Field experiments were carried out during 2020 in a 6-year old commercial cordon-trained, spur-pruned  vineyard of own-rooted ‘Xynisteri’ grapevines in Agios Ioannis (34o53’56.5″N 33o00’48.4″E) (Limassol district, Cyprus). Grapevine developmental stages were determined based on the Biologische Bundesanstalt, Bundessortenamt, Chemische Industrie (BBCH) scale. Leaf and berry samples were collected at BBCH 75, 85, 87 and 89. Leaves were additionally harvested prior to irrigation. For biochemical analysis, leaves and berries were flash frozen in liquid nitrogen in the vineyard, ground into powder in the lab, and stored at -80oC until needed. 

Results – Physiological parameters of leaves were severely affected from drought stress; stomatal conductance registered exceptionally low values at non-irrigated vines. Non-irrigated berries were characterized by higher total soluble content and ripening Index (TSS/TA), while titratable acidity (TA) and pH registered lower values. The concentration of glycosylated aromatic compounds on irrigated grapes was lower, mainly due to their bigger size that led to a dilution effect. Thus, non-irrigated berries can be destined for production of fresh wines. On the other hand, the concentration per g of berry was lower on irrigated berries but the concentration per berry was higher. Hence, the irrigated berries are better suited for dessert wines production upon sun-drying. Finally, molecular signatures were mapped in grapes using RNA-sequencing, which lead to the identification of a number of key transcripts involved in the response.

DOI:

Publication date: July 7, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Egli C. GEORGIADOU1,2*, Minas MINA2, Nikolas VALANIDES1, Katarzyna WŁODARCZYK3, Stefanos KOUNDOURAS4, Claudio D’ONOFRIO5, Andrea BELLINCONTRO6, Fabio MENCARELLI5, Vasileios FOTOPOULOS1, George A. MANGANARIS1*

1Cyprus University of Technology, Limassol, Cyprus
2Kyperounda Winery, Kyperounda, Cyprus
3Lodz University of Technology, Lodz, Poland
4Aristotle University of Thessaloniki, Thessaloniki, Greece
5Univesrity of Pisa, Pisa, Italy
6University of Tuscia, Viterbo, Italy

Contact the author*

Keywords

volatile organic compounds, abiotic stress, drought, indigenous cultivars, aroma profile

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

Úbeda-Aguilera, C., a Callejón, R. M., b Peña-Neira, A c. a Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Chile b Área de Nutrición y Bromatología. Facultad de Farmacia. Universidad de Sevilla. C/ P. García González nº 2, E- 41012. Sevilla. Spain c Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety.

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.