terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Manipulating grapevine bud fruitfulness

Manipulating grapevine bud fruitfulness

Abstract

Context and purpose of the study – Bud fruitfulness is a key component of reproductive performance of grapevine.  It plays a significant role in annual yield variation of vineyards as it is a prerequisite of crop production in the following season. Various exogenousand endogenous factors influencing the development of inflorescence primordia (IP) have been studied. However, the research on molecular genetic control of bud fruitfulness, especially how it interacts with environmental factors is still lacking. This study aims to investigate the molecular mechanism of effects of temperature and light on grapevine bud fruitfulness during initiation and differentiation of IP. The project also manipulated bud fruitfulness in field using canopy management practices and explore the influence on reproductive performance in the following seasons. 

Material and methods Semillon cuttings were propagated and exposed to six regimes of combined light (90, 200 and 600 PAR) and temperature (day/night 30/25°C and 20/15°C) in growth rooms. Bud samples were collected at three stages (E-L Stage 17, 35 and 38) for bud transcription analysis by RNA-seq and fruitfulness was assessed at E-L Stage 35, 38 and 43. In field, intensive shoot thinning was applied on Semillon vines at E-L Stage 17 to investigate the effect of this practice on canopy architecture and reproductive performance of grapevine over time. Plant area index and light interception by the canopy were captured at different growing stages and bud fruitfulness was assessed at dormancy by recording number and size of IP. Inflorescence and bunch architecture, and yield components were measured in the following seasons. 

Results – In growth rooms, both number and size of IP were positively correlated to temperature and light within the given range. Shoot vigour was negatively associated with bud fruitfulness, indicating that there may be competition for resources between shoot growth and bud development. RNA-seq analysis revealed that temperature had a greater influence at early development (pre-flowering, E-L Stage 17) with 8530 differentially expressed genes (DEGs), while light was most important later (veraison, E-L Stage 35) with 5716 DEGs. Gene ontology enrichment analysis showed that the DEGs were mainly involved in biological functions of stress management under the temperature treatment and active cellular development under the light treatment. It was found in field that shoot thinning created a more open canopy and improved bud fruitfulness with more and larger IP. Inflorescence architecture was increased in the next season, suggesting a carry-over effect of the treatment on the enlarged IP. A compensation in bunch development was shown by increased berry number and weight and moreover, the extent of compensation was accumulative when the practice was imposed in consecutive seasons.

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Xiaoyi WANG1,2*, Cassandra COLLINS1,2, Dabing ZHANG2 and Matthew GILLIHAM1,2

1ARC Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, 5064, Australia
2School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia

Contact the author*

Keywords

bud fertility, inflorescence primordia, yield potential, bud transcription, canopy management, reproductive performance

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.