terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance


Context and purpose of the study – Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Material and methods – Vitis vinifera cv Riesling were grafted on three rootstocks genotypes : 140Ru and 110R considered as tolerant to water stress and RGM as sensitive. Plants were grown in a glasshouse for 4 weeks either in rhizotrons and in transparent tubes (40cm height) and submitted to two substrate water regimes (WW, irrigation to 90% of field capacity; WD, no irrigation until reaching 50% of field capacity). In the tube experiment, the amount of transpired water was measured gravimetrically three times a week. In both trials, RSA traits were analyzed by 2D digital imaging using SmartRoot and RhizoVision software.

Results – Root phenotyping after 30 days revealed similar total root biomass between RGM and 140Ru greater than 110R, but there are substantial variations in RSA morphological traits between rootstocks.The drought-sensitive RGM was characterized by shallow root system development, with more primary roots and a larger proportion of laterals roots in the upper half of the rhizotrons or tubes. In contrast, the drought-tolerant rootstocks 140Ru and 110R were characterized by fewer, more plunging roots and showed proportionately a higher root length density in the deep layer. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for all three rootstocks ; suggesting vertical distribution of roots was more influenced by genotype than plasticity to the soil water regime, at least in our experimental conditions. The deeper root system of 140Ru compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on aboveground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.


Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster


Mathieu LARREY1*, Louis BLOIS1,2, Jean-Pascal TANDONNET1, Clément SAINT CAST1, Marina DE MIGUEL VEGA1, Elisa MARGUERIT1 and Philippe VIVIN1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Department of Viticulture, Hochschule Geisenheim University, Germany

Contact the author*


root system architecture, root traits, water uptake, drought tolerance, genotypic diversity, rootstock, grapevine


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.