terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Abstract

Context and purpose of the study – Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurateand high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (YPD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.
The aim of this study is to evaluate a dataset of eco-physiological data collected in a 3-year vineyard irrigation trial to assess the explanatory power of the fraction of transpirable soil water (FTSW) to predict YPD by comparing the classical statistical regression approach with a machine learning algorithm (MLA).

Material and methods – Deficit irrigation trials were conducted from 2013 to 2015 in a commercial vineyard in the Alentejo (southern Portugal). Trial plot was planted with Vitis vinifera (L.) cv. Aragonez (ARA)(syn. Tempranillo), grafted onto 1103 Paulsen rootstock and spaced 1.5 m within and 3.0 m between N-S oriented rows. The experimental layout was a randomized complete block design with two treatments: sustained deficit irrigation (SDI – control; ~30% Etc) and regulated deficit irrigation (RDI; ~15% Etc) and 4 replicates per treatment. The YPD and soil water content were measured the day before and the day after each irrigation event by using a capacitance probe down to a soil depth of 1 m and a Scholander pressure chamber. Models predicting YPD from FTSW were trained on 600 data cases and validated on an independent dataset (10% of all available data) using MATLAB R2022b (Mathworks, USA) and STATISTICA 13 (Tibco, USA). 

Results – Our results show that 87.6% of the observed YPD variability is explained by the FTSW using a linear regression model (LRM) with a linear-logarithmic transformation of the independent variables. The accuracy of the prediction model, as measured by root mean squared error (RMSE), in the independent validation dataset, was 0.08 MPa. These results were compared to the estimation accuracy of a set of MLAs. Two support vector machine (SVM) algorithms with a quadratic and a medium Gaussian kernel function, and three Gaussian process regression (GPR) algorithms with an exponential, a squared exponential and a rational quadratic kernel functions were tested. All trained MLAs showed an accuracy in explaining the variability of the YPD (86-87%) similar to the LRM. An increase in the model explained variability of the independent dataset from 89 to 91% was observed in all MLAs, with an accuracy of 0.087 to 0.096MPa as measured by the RMSE.
Both statistical methods indicate that YPD can be estimated with good accuracy using FTSW as an explanatory variable. Regarding the comparative performance of the two types of statistical models no differences were found in the ability of the tested models to estimate YPD.

DOI:

Publication date: June 29, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Ricardo EGIPTO1*, J. Miguel COSTA2, José SILVESTRE1, Carlos M. LOPES2

1INIAV IP – Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
2LEAF – Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Univ. Lisboa, Portugal

Contact the author*

Keywords

deficit irrigation, soil water content, machine learning algorithms

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.