terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 High and extreme high temperature effects on shiraz berry composition 

High and extreme high temperature effects on shiraz berry composition 

Abstract

Context and purpose of the study – Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Material and methods – Temperature-related parameters (duration, intensity, day/night, phenological stages, levels and berry acclimation) were investigated across five glasshouse experiments, conducted on well-irrigated potted Shiraz grapevines, during the 2016-17 and 2018-19 seasons. The research focused on high (>35 °C) and extreme high (>45 °C) temperatures impact on berry physiology, survival and detailed tannin composition. Berries were sampled at regular intervals, peeled, ground, and skin and seed flavonoid composition individually analysed by LC-MS/MS. Primary and other secondary metabolites were also analysed by gas and liquid chromatography-mass spectrometry on key samples to provide a more comprehensive picture.

Results – Tannin accumulation experienced just a short delay following high temperature exposure during early berry development, providing berries were not damaged. Differences were likely due to a combination of berry development disruption as well as a deregulation of some genes involved in tannin biosynthesis. Most differences were no longer evident by harvest, but if any, tannin extractability was increased compensating for the decrease in berry phenolics. To complement compositional responses, berry survival thresholds were identified with green Shiraz berries exhibiting visual damage for temperatures above 42-44 °C while red berries only started to necrose above 50 °C. In damaged berries, skin flavonoids were dramatically reduced while seeds were mostly preserved. With the experimental system used for this study, tannin accumulation showed an elastic response to high temperature and if berries were not shrivelled, quality was not impaired at harvest by the sole effect of temperature.

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Julia GOUOT1,2,*, Jason SMITH1,3, Bruno HOLZAPFEL4, Celia BARRIL1,2

1Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
2School of Agricultural, Environmental and Veterinary Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
3New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
4Wagga Wagga Agriculture Institute, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author*

Keywords

berry composition, bunch heating, composition, heatwave, high temperature, tannins

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

Úbeda-Aguilera, C., a Callejón, R. M., b Peña-Neira, A c. a Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Chile b Área de Nutrición y Bromatología. Facultad de Farmacia. Universidad de Sevilla. C/ P. García González nº 2, E- 41012. Sevilla. Spain c Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety.

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.