terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 New satellite-based sampling protocols for grapevine nutrient monitoring

New satellite-based sampling protocols for grapevine nutrient monitoring

Abstract

Context and purpose of the study – Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.

Material and methods – Mean composites of Sentinel-1 Synthetic Aperture Radar (SAR) images as a proxy of soil characteristics and Sentinel-2 Normalized Difference Vegetation Index (NDVI) as a proxy of canopy characteristics were clustered into three clusters (low-medium-high variability zones) using the Kmeans++ algorithm. Two spatial sampling protocols: (i) Grower Path (GP) (ii) NDVI+SAR3 and one standard Random20 (R20) protocol, were tested against the full block nutrient concentration (control of the study). R20 was a computer-generated random sample of 20 locations in each vineyard block. GP consisted of three sampling locations which were the centroid of the low-medium-high variability zones. NDVI+SAR3 was one location sampling grid (30mx30m) calculated using the mean absolute distance between each pixel and its cluster centroid. Field-specific sampling trials were conducted at bloom and veraison in the vineyards of Western New York and the Finger Lakes region in 2021 and 2022. Both macro (N, P, K, Ca, Mg) and micro-nutrients (Al, B, Cu, S, Fe, Mn, Na, Zn) were analyzed. All pixels were sampled for two blocks of cultivars –  Riesling and Concord. The mean absolute percentage error (MAPE) was calculated for each block, comparing GP, NDVI+SAR3, and R20 with overall nutrient concentration.

Results – R20 explained overall nutrient variation with approximately <1% MAPE for macro and micronutrients at bloom and veraison in both years. In comparison, GP had higher error rates for macro (3.6%) and micro-nutrients (8.9%) at bloom and similar with 3.8% and 9.4% error at veraison. At bloom, GP captured variability of important macronutrients like N, P, and K with 4.2%, 6.9% and 1.0% error rates. Micro-nutrients like Cu and B had higher errors of 9.2% and 6.8%, respectively. At veraison, these error rates were approximately the same for macronutrients but much larger for micro-nutrients. NDVI+SAR3 exhibited lower errors compared to GP and slightly higher errors compared to R20. The MAPE for N, P, K and Mg for macronutrients was between 1-3% at bloom and veraison. For micronutrients, like Cu and B, the MAPE was 2%-3% at bloom, almost doubling at veraison (6%). The errors were marginally higher at veraison than bloom across all sampling protocols, with a difference of <0.5% for macro-nutrients and <2% for micro-nutrients using R20 and NDVI+SAR3. Further exploration should exploit narrow-band remote sensing images for the block’s different size, climate, soil and topography. Future work should use R20 nutrient concentrations to compare with spatial sampling protocols as it captures the vineyard variability adequately.

DOI:

Publication date: June 30, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Manushi Trivedi1*, Terence Bates2, James Meyers3, Justine Vanden Heuvel1

1Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
2Cornell Lake Erie Research and Extension Laboratory Cornell University, NY, USA
3Cornell Cooperative Extension, Cornell University, Ithaca, NY 14853, USA

Contact the author*

Keywords

viticulture, nutrient sampling, remote sensing, Sentinel, spatial sampling

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

New insights about sensory contribution of grape stems during winemaking: role of astilbin, a sweet polyphenol

In this video recording of the IVES science meeting 2025, Marie Le Scanff (University of Bordeaux, UMR 1366 Oenologie, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about the sensory contribution of grape stems during winemaking and about the role of astilbin, a sweet polyphenol. This presentation is based on an original article accessible for free on OENO One and on a technical article published on IVES Technical Reviews.

Application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines: biological acidification, prise de mousse, aroma profile. Two cases of study

In this video recording of the IVES science meeting 2025, Raffaele Guzzon (Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, San Michele all’Adige (TN), Italy) speaks about the application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines (biological acidification, prise de mousse, aroma profile). This presentation is based on an original article accessible for free on OENO One.

What does the concept of natural wine evoke in the minds and senses of tasters? Effect of the level of expertise.

In this video recording of the IVES science meeting 2025, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne-Franche-Comté, Dijon, France) and María-Pilar Sáenz-Navajas (Instituto de Ciencias de la Vid y el Vino (ICVV) (CSIC-UR-GR), La Rioja, Spain) speak about the concept of natural wine. This presentation is based on an original article accessible for free on OENO One.

The role of rootstock and its genetic background in plant mineral status

In this video recording of the IVES science meeting 2025, Marine Morel (EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave-d’Ornon, France) speaks about the role of rootstock and its genetic background in plant mineral status. This presentation is based on an original article accessible for free on OENO One.

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.