terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Abstract

Context and purpose of the study – Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards. However, when field measurements, such as stem water potentials (SWP), can be precise, they are time-consuming. In addition, they do not allow for easy assessment of spatial variability, which is a critical factor for water status management. Remote sensing tools can help map plant water status in space and time and streamline data acquisition over whole vineyards several times during the season. In this project, we monitored a variably irrigated vineyard several times during the season with a hyperspectral NIR/SWIR camera mounted on a UAV.

Material and methods – We worked in a Cabernet Sauvignon vineyard in the San Joaquin Valley of California equipped with an automated irrigation system. We created forty-eight independent watering zones and applied twelve different amounts of water replicated four times in a randomized block scheme. Water amounts were fractions of the grower allocation and applied as sustained and regulated deficit irrigation strategies. Hyperspectral images in 112 bands from 900 nm to 1700 nm were collected using a UAV every two weeks from June to harvest. Contemporarily, we measured vine water status through SWP, stomatal conductance (gs) and net assimilation (AN). For the analysis, the images were segmented to extract the canopy signal and converted to reflectance, then used to predict the field water status measurements using machine learning models. Models were evaluated using coefficients of determination (R2), and root mean square error (RMSE). Feature importance was also computed to determine the importance of each band in the model.

Results – Field measurements of stem water potential ranged from -2.0 to -1.14 MPa. The canopy signal was segmented from the soil background using a classifier with an accuracy of 99.7%. We tested random forest, gradient boosting machine, and support vector machine algorithms in a preliminary analysis to predict SWP values. The most performant model was the random forest, and it was able to predict SWP values with an R2 of 0.6 and an RMSE of 0.1 MPa as assessed in a 5-fold cross-validation procedure. The most important bands for model prediction were 1146 nm, 1153 nm, 1321 nm, 1363 nm, and 1434 nm, all situated in water absorption domains. These promising results demonstrate that SWIR images can monitor the field’s vine water status and inform irrigation management with high resolution.

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Kaylah VASQUEZ1, Eve LAROCHE-PINEL1, Guadalupe PARTIDA1, Luca BRILLANTE1*

1Department of Viticulture & Enology, California State University Fresno, Fresno, CA, USA

Contact the author*

Keywords

vine water status, hyperspectral imaging, drone, variable rate irrigation

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

Úbeda-Aguilera, C., a Callejón, R. M., b Peña-Neira, A c. a Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Chile b Área de Nutrición y Bromatología. Facultad de Farmacia. Universidad de Sevilla. C/ P. García González nº 2, E- 41012. Sevilla. Spain c Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety.

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.