terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Image based vineyard yield prediction using empirical models to estimate bunch occlusion by leaves

Image based vineyard yield prediction using empirical models to estimate bunch occlusion by leaves


Context and purpose of the study – Vineyard yield estimation brings several advantages to the entire wine industry. It can provide useful information to support decision making regarding bunch thinning practices, harvest logistics and marketing strategies, as well as to manage stored wine and cellar tanks allocation. Today, this estimation is performed mainly using manual methods based on destructive bunch sampling. Yield estimation using image analysis has the potential to perform this task extensively, automatically and non-invasively. However, bunch occlusion, caused mainly by leaves, presents a great challenge to this approach. This occlusion is highly dependent on canopy porosity, which in turn is affected by factors such as vigor, shoot density and leaf area, water availability, biotic and abiotic stresses, among others. In this work, the results of an image-based yield estimation method that estimates bunch occlusion by leaves using canopy porosity data, are compared with a manual approach. 

Material and methods – The trial was carried out in two vineyards located within Lisbon winegrowing region, over four years (2018-21). Spur pruned vines trained on a vertical shoot positioning trellis system were used. In a first step, an empirical model was computed to estimate the fraction of bunches occluded by leaves based on the proven assumption in the literature that there is a relationship between canopy porosity and the fraction of exposed bunches. For this, images were captured from 1 m segments at two phenological stages (veraison and full maturation) in non-defoliated and partially defoliated vines of three grape varieties. This model was then used, in a second step, along with other image-based predictors of bunch weight, to estimate grapevine yield. The developed approach included image-based variables related to the visible bunch area and perimeter, berry number and bunch compactness, while considering canopy porosity to estimate the fraction of occluded bunch area. Results were compared to a manual method based on bunch counts and historical bunch weight, on six grape varieties, at veraison. All vine images were collected from a perspective perpendicular to the vine rows, by a static commercial RGB camera or a RGB camera installed on a terrestrial robot. 

Results – The yield estimated with the developed algorithm showed a high correlation with the actual yield (R2 = 0.86), with estimation errors ranging between -0.1% and 20.8%, depending on the variety and the year. In most cases, the proposed algorithm outperformed the manual method which was mostly impaired by variations of bunch weight that were not considered by historical data. The proposed image-based approach seems to be an accurate alternative to conventional yield estimation methods. It can be carried out using different image collection setups and has the advantage of being independent of historical data and able to be applied to much larger samples than those used in manual methods. Even though the occlusion estimation method worked well for most cases, further research is needed for modeling non-visible bunches in very dense canopies.


Publication date: July 3, 2023

Issue: GiESCO 2023

Type: Poster


Gonçalo VICTORINO*, Carlos M. LOPES

Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal

Contact the author*


grapevine yield prediction, bunch occlusion, proximal sensing, canopy porosity, bunch pixels


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.