terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition


Context and purpose of the study – Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.

Material and methods – A trial was conducted in a commercial, drip-irrigated, own-rooted Syrah vineyard in arid eastern Washington in 2021 and 2022. We compared 4 treatments of soil-applied liquid urea ammonium nitrate (0, 22.5, 45, 90 kg N/ha), split in 3 applications (5-6 leaf stage, bloom, fruit set) with a 15 kg N/ha foliar urea treatment, split in 3 applications starting at the end of the lag phase of berry development. Wine was produced from all treatments.

Results – Berry weight, cluster number, yield, juice total soluble solids, pH, titratable acidity and malic acid were similar among nitrogen treatments in 2021 and 2022. Must YAN increased with increasing soil applied N, but the foliar N treatment was much more effective at increasing YAN than was soil-applied N. The phenolics concentration in the juice at the beginning of fermentation was similar between treatments. For 2021 and 2022 wines at pressing, tannins were low and decreased as N application increased. Fruit and wine anthocyanins and wine total phenolics were unaffected in both vintages by the field treatments.


Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster


Pierre Davadant1*, Nataliya Shcherbatyuk1, Ryan Doyle2, James Harbertson2 and Markus Keller1

1Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, USA
2Washington State University, Wine Science Center, Richland, WA 99354, USA

Contact the author*


foliar urea, grape composition, nitrogen, YAN, phenolics


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).