terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

Abstract

Context and purpose of the study – Rotundone is the main aroma compound responsible for peppery notes in red wine. This positive and very potent molecule has an odor threshold of 8 ng/L in water and 16 ng/L in red wine. It has been detected in several grape varieties with some of the highest concentrations recorded in Syrah, Duras, Tardif and Noiret, an interspecific hybrid grown in the North-East of the USA. If several winemaking practices have been identified to lower rotundone in wine, up to date, no enological solution has proved its efficiency to maximize it. This means that efforts to produce high rotundone wines must be undertaken in vineyards. This work provides practical ways that can be used by winegrowers to modulate rotundone levels in their wines.

Material and methods – Several field trials have been conducted for more than ten years in the southwest of France on Duras to investigate the impact of environmental factors and viticultural practices on rotundone concentration. This grape variety only grown within the protected designation of origin Gaillac was selected as it is known to exhibit substantial and regular levels of rotundone. These experiments were carried out using, in most cases, randomised complete block design with three replications per treatment. This research includes the study of the effect of clone, disease, ripeness, irrigation, defoliation, grape thinning, and the key factors driving the variability in rotundone concentrations between sites. Rotundone was quantified indirectly in wines fermented under microvinification conditions (1 L Erlenmeyer flask).

Results – Our results highlighted that certified clones had an impact on rotundone concentration in wine. The production of rotundone by the plant could be a response to biotic stress as a significant and positive correlation was established between rotundone concentrations and the severity of powdery mildew (Erysiphe necator) on bunches. On the opposite, Botrytis cinerea had a negative impact on rotundone in wine as a likely consequence of the activity of its polyphenol oxidase. Rotundone accumulation was also affected by abiotic factors, rising in concentration with an increase in water supply and radiation, while temperature elevation had a depreciative impact. The molecule was not impacted by grape thinning, suggesting the absence of translocation and a likely in situbiosynthesis. Harvesting date, irrigation, defoliation were identified as leverages to manipulate rotundone levels in wines.

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Olivier GEFFROY*, Thomas BAERENZUNG DIT BARON, Marie DENAT, Didier KLEIBER, Alban JACQUES

PPGV, Ecole d’Ingénieurs de PURPAN, 75 voie du TOEC, F-31076 Toulouse, France

Contact the author*

Keywords

rotundone, Vitis vinifera L. Duras, biotic factors, abiotic factors, viticultural practices

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

Úbeda-Aguilera, C., a Callejón, R. M., b Peña-Neira, A c. a Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Chile b Área de Nutrición y Bromatología. Facultad de Farmacia. Universidad de Sevilla. C/ P. García González nº 2, E- 41012. Sevilla. Spain c Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety.

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.