GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Abstract

Context and purpose of the study ‐ The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Material and methods ‐ The objective was to determine the impact of an increment of atmospheric CO2 and temperature (both acting independently and combined) on the grape composition of five somatic variants of Tempranillo (CL306, T3, RJ43, 1084 and VN31). Fruit‐bearing cuttings were grown from fruit‐set to maturity (around 22ºBrix) in temperature gradient greenhouses under two temperature regimes (ambient temperature and ambient temperature + 4ºC) in combination with two CO2 levels (400 ppm and 700 ppm).

Results ‐ The evolution of sugars (glucose and fructose) and malic acid, as well as the final levels of anthocyanins and the relation of anthocyanins and sugars indicate that grape ripening will be affected by climate change in different manner among somatic variants. High temperatures increased the degradation of malic acid and raised the accumulation of sugars, meanwhile CO2 levels also promoted the degradation of malic acid especially at maturity. Somatic variants showed differences in the anthocyanin levels at maturity. Total anthocyanins were not dramatically affected by the temperature and CO2 levels assayed. The CL306 and T3 somatic variants were identified as potential candidates for the adaptation of cv. Tempranillo to climate change.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Marta ARRIZABALAGA‐ARRIAZU1,2,3, Fermín MORALES4,5, Juan José IRIGOYEN1, Inmaculada PASCUAL1,  Ghislaine HILBERT3

1 Universidad de Navarra. Faculty of Sciences. Plant Stress Physiology group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño). Irunlarrea, 1. 31008, Pamplona, Spain
2 Université de Bordeaux, Institut des Sciences de la Vigne et du Vin. Unité Mixte de Recherche, 1287 Ecophysiologie et génomique fonctionelle de la vigne. 33883, Villenave d’Ornon, France
3 UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, 210 Chemin de Leysotte 33882 Villenave d’Ornon, France
4 Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avenida De Pamplona 123, 31192 Mutilva Baja, Spain.
5 Estación Experimental de Aula Dei (EEAD). CSIC. Department of Plant Nutrition. Apdo. 13034, 50080 Zaragoza, Spain

Contact the author

Keywords

Grapevine, Climate Change, Tempranillo, Sugars, Malic acid, Anthocyanins

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

Health space in vine spa in the world

This elaboration presents vine spa has precious contribution of social development health and well being in culture of wine regions. The majority of the vine-spas in the world draw raw materials from the vineyard; both for cosmetics treatments and for dishes in their restaurants. Vitis vinifera vine provides fresh grapes for dishes and massages, seeds and oil from the seeds, as well as the leaves, and its extracts, and above all the wine.

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

Disease‐induced alterations in the reflectance spectrum of grape leaves

Context and purpose of the study ‐ Phytopathogenic diseases impact the development and yield of grapevines, resulting in economical, social and environmental losses.