GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Abstract

Context and purpose of the study ‐ The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Material and methods ‐ The objective was to determine the impact of an increment of atmospheric CO2 and temperature (both acting independently and combined) on the grape composition of five somatic variants of Tempranillo (CL306, T3, RJ43, 1084 and VN31). Fruit‐bearing cuttings were grown from fruit‐set to maturity (around 22ºBrix) in temperature gradient greenhouses under two temperature regimes (ambient temperature and ambient temperature + 4ºC) in combination with two CO2 levels (400 ppm and 700 ppm).

Results ‐ The evolution of sugars (glucose and fructose) and malic acid, as well as the final levels of anthocyanins and the relation of anthocyanins and sugars indicate that grape ripening will be affected by climate change in different manner among somatic variants. High temperatures increased the degradation of malic acid and raised the accumulation of sugars, meanwhile CO2 levels also promoted the degradation of malic acid especially at maturity. Somatic variants showed differences in the anthocyanin levels at maturity. Total anthocyanins were not dramatically affected by the temperature and CO2 levels assayed. The CL306 and T3 somatic variants were identified as potential candidates for the adaptation of cv. Tempranillo to climate change.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Marta ARRIZABALAGA‐ARRIAZU1,2,3, Fermín MORALES4,5, Juan José IRIGOYEN1, Inmaculada PASCUAL1,  Ghislaine HILBERT3

1 Universidad de Navarra. Faculty of Sciences. Plant Stress Physiology group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño). Irunlarrea, 1. 31008, Pamplona, Spain
2 Université de Bordeaux, Institut des Sciences de la Vigne et du Vin. Unité Mixte de Recherche, 1287 Ecophysiologie et génomique fonctionelle de la vigne. 33883, Villenave d’Ornon, France
3 UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, 210 Chemin de Leysotte 33882 Villenave d’Ornon, France
4 Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avenida De Pamplona 123, 31192 Mutilva Baja, Spain.
5 Estación Experimental de Aula Dei (EEAD). CSIC. Department of Plant Nutrition. Apdo. 13034, 50080 Zaragoza, Spain

Contact the author

Keywords

Grapevine, Climate Change, Tempranillo, Sugars, Malic acid, Anthocyanins

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must.

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

Early ripening in cool climate viticulture varieties is mainly based on a mutation in ‘Pinot precocé noir’

For a long time, cool climate grapevine breeding has striven for early ripening cultivars to adapt to the former climate conditions.

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

An automated cooling system to mitigate thermal and radiative stresses in Pignoletto white grapes

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.