GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Abstract

Context and purpose of the study ‐ The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Material and methods ‐ The objective was to determine the impact of an increment of atmospheric CO2 and temperature (both acting independently and combined) on the grape composition of five somatic variants of Tempranillo (CL306, T3, RJ43, 1084 and VN31). Fruit‐bearing cuttings were grown from fruit‐set to maturity (around 22ºBrix) in temperature gradient greenhouses under two temperature regimes (ambient temperature and ambient temperature + 4ºC) in combination with two CO2 levels (400 ppm and 700 ppm).

Results ‐ The evolution of sugars (glucose and fructose) and malic acid, as well as the final levels of anthocyanins and the relation of anthocyanins and sugars indicate that grape ripening will be affected by climate change in different manner among somatic variants. High temperatures increased the degradation of malic acid and raised the accumulation of sugars, meanwhile CO2 levels also promoted the degradation of malic acid especially at maturity. Somatic variants showed differences in the anthocyanin levels at maturity. Total anthocyanins were not dramatically affected by the temperature and CO2 levels assayed. The CL306 and T3 somatic variants were identified as potential candidates for the adaptation of cv. Tempranillo to climate change.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Marta ARRIZABALAGA‐ARRIAZU1,2,3, Fermín MORALES4,5, Juan José IRIGOYEN1, Inmaculada PASCUAL1,  Ghislaine HILBERT3

1 Universidad de Navarra. Faculty of Sciences. Plant Stress Physiology group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño). Irunlarrea, 1. 31008, Pamplona, Spain
2 Université de Bordeaux, Institut des Sciences de la Vigne et du Vin. Unité Mixte de Recherche, 1287 Ecophysiologie et génomique fonctionelle de la vigne. 33883, Villenave d’Ornon, France
3 UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, 210 Chemin de Leysotte 33882 Villenave d’Ornon, France
4 Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avenida De Pamplona 123, 31192 Mutilva Baja, Spain.
5 Estación Experimental de Aula Dei (EEAD). CSIC. Department of Plant Nutrition. Apdo. 13034, 50080 Zaragoza, Spain

Contact the author

Keywords

Grapevine, Climate Change, Tempranillo, Sugars, Malic acid, Anthocyanins

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Developing effective physiological strategies to rejuvenate virus-infected vineyards by lowering the virus load in infected grapevines

Context and purpose of the study. The wine industries face significant challenges from two highly detrimental viruses: leafroll and red blotch.

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Heat-stress responses regulated via a MYB24-MYC2 complex

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages.

Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Aim: This study aimed to benchmark the chemical and sensory consequences of grapevine exposure to smoke, by comparing: (i) the concentration of volatile phenols and volatile phenol glycosides in control and smoke-affected grapes from different cultivars and different wine regions; and (ii) the chemical and sensory profiles of wines made from control and smoke-affected grapes, from different cultivars.  

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.