GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Tolerance to sunburn: a variable to consider in the context of climate change

Tolerance to sunburn: a variable to consider in the context of climate change

Abstract

Context and purpose of the study – Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Material and methods – Sunburn intensity was evaluated in an ampelographic field, located at Alentejo, the warmest region of Portugal, after a strong heat wave that occurred in the first week of august of 2018. The vineyard, planted in 2011, has 189 grapevine varieties (125 plants per variety), grafted on 1103P, with a plant density of 2222 plants ha-1 (distance in the row = 1.5m; distance between rows =3.0 m). Row orientation is N-S. Sunburn intensity was visually evaluated in both sides of the canopy and the results converted into varietal tolerance to sunburn (intensity ranging from 1 to 5, being 1 very tolerant and 5 very sensitive). Standard meteorological variables were measured at the experimental plot, namely air temperature, vapor pressure deficit, wind speed and direct solar radiation (hourly data). Canopy height and width was estimated from digital images perpendicular to the rows (12 images per variety) and from remote imagery (Micasense Redegde).

Results –The heat wave observed in August was characterized for a period of 6 consecutive days with maximum air temperatures above 40oC (Tmax ≈ 45oC), minimum temperatures around 25oC and extremely dry air and the maximum DPV higher than 8.4 kPa. From the 103 white varieties under study, only 3 varieties were classified as extremely sensitive and 5 as very sensitive. From all the evaluated white varieties, 44% (with different geographic origins) behaved as extremely tolerant. Relatively to the 82 red varieties, there was an increase in the varieties classified as extremely sensitive and very sensitive varieties (17%) and a reduction on the varieties classified as extremely tolerant (30%). Only 4 rose varieties were studied and Ahmeur bou Ahmeur stands out. This variety was very sensitive to sunburn despite its North African origin.

The increase of sunburn intensity in red varieties highlights the contribution of berry color on berry energy balance. When comparing the bunch exposition, it was observed that sunburn intensity in exposed grapes onthe West facing side of the canopy was around two times bigger than in the East face, either for white and red cultivars, which highlights the importance of row orientation in new plantations.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

José SILVESTRE1*, Miguel DAMÁSIO1, Ricardo EGIPTO1, Jorge CUNHA1, João BRAZÃO1, José EIRAS-DIAS1, Rui FLORES2, Amandio RODRIGUES2, Patrick DONNO2, Jorge BÖHM3

1 INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos
2 Herdade do Esporão, Apartado 31, 7200-999, Reguengos de Monsaraz
3 Viveiros PLANSEL Lda, Quinta São Jorge, 7050-909 Montemor-o-Novo

Contact the author

Keywords

Grapevine, Variety, Sunburn, Heat wave, Climate change

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine.
Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant.
In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices.
The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.