GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Tolerance to sunburn: a variable to consider in the context of climate change

Tolerance to sunburn: a variable to consider in the context of climate change

Abstract

Context and purpose of the study – Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Material and methods – Sunburn intensity was evaluated in an ampelographic field, located at Alentejo, the warmest region of Portugal, after a strong heat wave that occurred in the first week of august of 2018. The vineyard, planted in 2011, has 189 grapevine varieties (125 plants per variety), grafted on 1103P, with a plant density of 2222 plants ha-1 (distance in the row = 1.5m; distance between rows =3.0 m). Row orientation is N-S. Sunburn intensity was visually evaluated in both sides of the canopy and the results converted into varietal tolerance to sunburn (intensity ranging from 1 to 5, being 1 very tolerant and 5 very sensitive). Standard meteorological variables were measured at the experimental plot, namely air temperature, vapor pressure deficit, wind speed and direct solar radiation (hourly data). Canopy height and width was estimated from digital images perpendicular to the rows (12 images per variety) and from remote imagery (Micasense Redegde).

Results –The heat wave observed in August was characterized for a period of 6 consecutive days with maximum air temperatures above 40oC (Tmax ≈ 45oC), minimum temperatures around 25oC and extremely dry air and the maximum DPV higher than 8.4 kPa. From the 103 white varieties under study, only 3 varieties were classified as extremely sensitive and 5 as very sensitive. From all the evaluated white varieties, 44% (with different geographic origins) behaved as extremely tolerant. Relatively to the 82 red varieties, there was an increase in the varieties classified as extremely sensitive and very sensitive varieties (17%) and a reduction on the varieties classified as extremely tolerant (30%). Only 4 rose varieties were studied and Ahmeur bou Ahmeur stands out. This variety was very sensitive to sunburn despite its North African origin.

The increase of sunburn intensity in red varieties highlights the contribution of berry color on berry energy balance. When comparing the bunch exposition, it was observed that sunburn intensity in exposed grapes onthe West facing side of the canopy was around two times bigger than in the East face, either for white and red cultivars, which highlights the importance of row orientation in new plantations.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

José SILVESTRE1*, Miguel DAMÁSIO1, Ricardo EGIPTO1, Jorge CUNHA1, João BRAZÃO1, José EIRAS-DIAS1, Rui FLORES2, Amandio RODRIGUES2, Patrick DONNO2, Jorge BÖHM3

1 INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos
2 Herdade do Esporão, Apartado 31, 7200-999, Reguengos de Monsaraz
3 Viveiros PLANSEL Lda, Quinta São Jorge, 7050-909 Montemor-o-Novo

Contact the author

Keywords

Grapevine, Variety, Sunburn, Heat wave, Climate change

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

Budburst delay and berry ripening after vegetal oil application in Austria

Occurrence of freezing temperatures in early spring when grapevine shoots are developing is termed late frost in viticulture. Young green tissues are very sensible to temperatures below zero and damages often lead to important yield and quality losses such as the case in Europe in 2017. An indirect method to avoid late frost damage in vineyards consist in delaying the budburst. Previous research reported similar effects by applying vegetal oil on dormant buds. Here, we tested the application of rapeseed vegetal oil during late winter to delay the budburst on two V.vinifera cultivars of interest in Austria, Grüner Veltliner (GV) and Zweigelt (ZW).

Maturità fenolica e cellulare come metodo di valutazione dell’interazione vitigno-ambiente: il caso del Cabernet-Sauvignon

ln the current work, phenolic and cellular maturation curves were used to assess the degree of adaptation of the cultivar Cabernet sauvignon to the sites under esamination. Five wine­-producing zones with different pedoclimatic characteristics and latitudes were considered (Marche, Toscana, Emilia, Friuli and Slovenia).

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.