GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Tolerance to sunburn: a variable to consider in the context of climate change

Tolerance to sunburn: a variable to consider in the context of climate change

Abstract

Context and purpose of the study – Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Material and methods – Sunburn intensity was evaluated in an ampelographic field, located at Alentejo, the warmest region of Portugal, after a strong heat wave that occurred in the first week of august of 2018. The vineyard, planted in 2011, has 189 grapevine varieties (125 plants per variety), grafted on 1103P, with a plant density of 2222 plants ha-1 (distance in the row = 1.5m; distance between rows =3.0 m). Row orientation is N-S. Sunburn intensity was visually evaluated in both sides of the canopy and the results converted into varietal tolerance to sunburn (intensity ranging from 1 to 5, being 1 very tolerant and 5 very sensitive). Standard meteorological variables were measured at the experimental plot, namely air temperature, vapor pressure deficit, wind speed and direct solar radiation (hourly data). Canopy height and width was estimated from digital images perpendicular to the rows (12 images per variety) and from remote imagery (Micasense Redegde).

Results –The heat wave observed in August was characterized for a period of 6 consecutive days with maximum air temperatures above 40oC (Tmax ≈ 45oC), minimum temperatures around 25oC and extremely dry air and the maximum DPV higher than 8.4 kPa. From the 103 white varieties under study, only 3 varieties were classified as extremely sensitive and 5 as very sensitive. From all the evaluated white varieties, 44% (with different geographic origins) behaved as extremely tolerant. Relatively to the 82 red varieties, there was an increase in the varieties classified as extremely sensitive and very sensitive varieties (17%) and a reduction on the varieties classified as extremely tolerant (30%). Only 4 rose varieties were studied and Ahmeur bou Ahmeur stands out. This variety was very sensitive to sunburn despite its North African origin.

The increase of sunburn intensity in red varieties highlights the contribution of berry color on berry energy balance. When comparing the bunch exposition, it was observed that sunburn intensity in exposed grapes onthe West facing side of the canopy was around two times bigger than in the East face, either for white and red cultivars, which highlights the importance of row orientation in new plantations.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

José SILVESTRE1*, Miguel DAMÁSIO1, Ricardo EGIPTO1, Jorge CUNHA1, João BRAZÃO1, José EIRAS-DIAS1, Rui FLORES2, Amandio RODRIGUES2, Patrick DONNO2, Jorge BÖHM3

1 INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos
2 Herdade do Esporão, Apartado 31, 7200-999, Reguengos de Monsaraz
3 Viveiros PLANSEL Lda, Quinta São Jorge, 7050-909 Montemor-o-Novo

Contact the author

Keywords

Grapevine, Variety, Sunburn, Heat wave, Climate change

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Analysis of mousy off-flavour wines

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

Effects of fast dehydration at low temperature and relative humidity on the phenolic composition of Nebbiolo grapes

Grape postharvest dehydration is a widely used technique for the special wines production, where genetic features, ripeness degree and environmental factors strongly influence the metabolic processes [1].