GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Tolerance to sunburn: a variable to consider in the context of climate change

Tolerance to sunburn: a variable to consider in the context of climate change

Abstract

Context and purpose of the study – Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Material and methods – Sunburn intensity was evaluated in an ampelographic field, located at Alentejo, the warmest region of Portugal, after a strong heat wave that occurred in the first week of august of 2018. The vineyard, planted in 2011, has 189 grapevine varieties (125 plants per variety), grafted on 1103P, with a plant density of 2222 plants ha-1 (distance in the row = 1.5m; distance between rows =3.0 m). Row orientation is N-S. Sunburn intensity was visually evaluated in both sides of the canopy and the results converted into varietal tolerance to sunburn (intensity ranging from 1 to 5, being 1 very tolerant and 5 very sensitive). Standard meteorological variables were measured at the experimental plot, namely air temperature, vapor pressure deficit, wind speed and direct solar radiation (hourly data). Canopy height and width was estimated from digital images perpendicular to the rows (12 images per variety) and from remote imagery (Micasense Redegde).

Results –The heat wave observed in August was characterized for a period of 6 consecutive days with maximum air temperatures above 40oC (Tmax ≈ 45oC), minimum temperatures around 25oC and extremely dry air and the maximum DPV higher than 8.4 kPa. From the 103 white varieties under study, only 3 varieties were classified as extremely sensitive and 5 as very sensitive. From all the evaluated white varieties, 44% (with different geographic origins) behaved as extremely tolerant. Relatively to the 82 red varieties, there was an increase in the varieties classified as extremely sensitive and very sensitive varieties (17%) and a reduction on the varieties classified as extremely tolerant (30%). Only 4 rose varieties were studied and Ahmeur bou Ahmeur stands out. This variety was very sensitive to sunburn despite its North African origin.

The increase of sunburn intensity in red varieties highlights the contribution of berry color on berry energy balance. When comparing the bunch exposition, it was observed that sunburn intensity in exposed grapes onthe West facing side of the canopy was around two times bigger than in the East face, either for white and red cultivars, which highlights the importance of row orientation in new plantations.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

José SILVESTRE1*, Miguel DAMÁSIO1, Ricardo EGIPTO1, Jorge CUNHA1, João BRAZÃO1, José EIRAS-DIAS1, Rui FLORES2, Amandio RODRIGUES2, Patrick DONNO2, Jorge BÖHM3

1 INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos
2 Herdade do Esporão, Apartado 31, 7200-999, Reguengos de Monsaraz
3 Viveiros PLANSEL Lda, Quinta São Jorge, 7050-909 Montemor-o-Novo

Contact the author

Keywords

Grapevine, Variety, Sunburn, Heat wave, Climate change

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Effect of vineyard management strategy on the nutritional status of irrigated « Tempranillo » vineyards grown in semi-arid areas

The combination of cover crops with regulated deficit irrigation has been lately shown to be a good method to improve harvest quality in irrigated vineyards of Southern Europe with semiarid climate, as an alternative to the conventional management, that consists on mechanical tillage and irrigation from fruitset to veraison and from then on reduced, or even ended.

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.