GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Tolerance to sunburn: a variable to consider in the context of climate change

Tolerance to sunburn: a variable to consider in the context of climate change

Abstract

Context and purpose of the study – Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Material and methods – Sunburn intensity was evaluated in an ampelographic field, located at Alentejo, the warmest region of Portugal, after a strong heat wave that occurred in the first week of august of 2018. The vineyard, planted in 2011, has 189 grapevine varieties (125 plants per variety), grafted on 1103P, with a plant density of 2222 plants ha-1 (distance in the row = 1.5m; distance between rows =3.0 m). Row orientation is N-S. Sunburn intensity was visually evaluated in both sides of the canopy and the results converted into varietal tolerance to sunburn (intensity ranging from 1 to 5, being 1 very tolerant and 5 very sensitive). Standard meteorological variables were measured at the experimental plot, namely air temperature, vapor pressure deficit, wind speed and direct solar radiation (hourly data). Canopy height and width was estimated from digital images perpendicular to the rows (12 images per variety) and from remote imagery (Micasense Redegde).

Results –The heat wave observed in August was characterized for a period of 6 consecutive days with maximum air temperatures above 40oC (Tmax ≈ 45oC), minimum temperatures around 25oC and extremely dry air and the maximum DPV higher than 8.4 kPa. From the 103 white varieties under study, only 3 varieties were classified as extremely sensitive and 5 as very sensitive. From all the evaluated white varieties, 44% (with different geographic origins) behaved as extremely tolerant. Relatively to the 82 red varieties, there was an increase in the varieties classified as extremely sensitive and very sensitive varieties (17%) and a reduction on the varieties classified as extremely tolerant (30%). Only 4 rose varieties were studied and Ahmeur bou Ahmeur stands out. This variety was very sensitive to sunburn despite its North African origin.

The increase of sunburn intensity in red varieties highlights the contribution of berry color on berry energy balance. When comparing the bunch exposition, it was observed that sunburn intensity in exposed grapes onthe West facing side of the canopy was around two times bigger than in the East face, either for white and red cultivars, which highlights the importance of row orientation in new plantations.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

José SILVESTRE1*, Miguel DAMÁSIO1, Ricardo EGIPTO1, Jorge CUNHA1, João BRAZÃO1, José EIRAS-DIAS1, Rui FLORES2, Amandio RODRIGUES2, Patrick DONNO2, Jorge BÖHM3

1 INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos
2 Herdade do Esporão, Apartado 31, 7200-999, Reguengos de Monsaraz
3 Viveiros PLANSEL Lda, Quinta São Jorge, 7050-909 Montemor-o-Novo

Contact the author

Keywords

Grapevine, Variety, Sunburn, Heat wave, Climate change

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Direct SPME GC-MS determination of volatile congeners in wines without sample pre-treatment

In this work “ethanol as an internal standard” method was used for the SPME GC-MS quantification of volatile congeners in wines. Our aim was to develop a fast and simple method of wine analysis without additional procedures, reagents etc. A row of standard solutions containing some frequently found congeners in wine was prepared gravimetrically. Suggested method was compared with traditional internal standard method.

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions