GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of changing climatic factors on physiological and vegetative growth

Impact of changing climatic factors on physiological and vegetative growth

Abstract

Context and purpose of the study – scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Material and methods – four glass house compartments were set up with combinations of the two main environmental factors, namely ambient temperature and CO2. Within each compartment, another treatment factor, water supply, was introduced. Young, grafted grapevines were established in pots in a randomized block design. Five growth cycles of 12 weeks each were monitored, with Shiraz as scion cultivar in three of them and Merlot in the other two. The rootstock used throughout was 101-14 Mgt. Vegetative and physiological growth parameters were measured throughout the growth cycles with critical sampling times at 4, 8 and 12 weeks after planting.

Results – a change in environmental growth conditions significantly affected physiological activity of the grapevine. Both increased CO2 levels and adequate water supply increased photosynthetic activity for all treatment combinations. Newly planted vines were photosynthetically more active and reacted more strongly to treatments than slightly older vines. The higher temperature treatment seemed to impair photosynthesis under comparable CO2 and H2O conditions, especially with regards to very young vines. The effect of temperature on vegetative growth was insignificant compared to the CO2 and H2O effects and only seemed to affect initial growth directly after planting. The availability of water was critical to root, shoot and leaf growth – higher CO2 levels further enhanced vegetative growth.
The results indicate that the importance and impact of the climatic variables and the vine reaction change during the growth season. The strong interactions found between weeks after planting, available water, ambient temperature and CO2 levels necessitate multi-variable research on the effect of changing climatic factors on the grapevine.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

H. THERON 1,2*, C.G. VOLSCHENK 3, J.J. HUNTER 3

1 Cape Peninsula University of Technology (CPUT), Wellington, South Africa
2 University of Stellenbosch (US), Stellenbosch, South Africa
3 ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa

Contact the author

Keywords

Climate change, Grapevine, CO2, Temperature; Water deficit, Growth, Physiology

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Water recharge before budbreak and/or deficit irrigation during summer: agronomic effects on cv. Tempranillo in the D.O. Ribera del Duero

The availability of water in the soil and the water status of the vineyard are proving to be determining factors for crop management in the current context of climatic variation

Cordon height and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon and petite Sirah grown in a hot climate

Cabernet Sauvignon and Petite Sirah are the top red wine cultivars in CA, however, the hot climate in Fresno is not ideal for red Vitis Vinifera, particularly for berry color development. Mechanical pruning and irrigation were studied previously to significantly affect grapevine yield performance and berry quality. But there is lack of studies on cordon height and irrigation on mechanical pruned vineyard system.

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material.

Permanent vs temporary cover crops in a Sangiovese vineyard: preliminary results on vine physiology and productive traits

Cover crops in vineyards have been extensively studied, as the choice of grass species and their management significantly influence soil properties and vine performance.

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.