GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of changing climatic factors on physiological and vegetative growth

Impact of changing climatic factors on physiological and vegetative growth

Abstract

Context and purpose of the study – scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Material and methods – four glass house compartments were set up with combinations of the two main environmental factors, namely ambient temperature and CO2. Within each compartment, another treatment factor, water supply, was introduced. Young, grafted grapevines were established in pots in a randomized block design. Five growth cycles of 12 weeks each were monitored, with Shiraz as scion cultivar in three of them and Merlot in the other two. The rootstock used throughout was 101-14 Mgt. Vegetative and physiological growth parameters were measured throughout the growth cycles with critical sampling times at 4, 8 and 12 weeks after planting.

Results – a change in environmental growth conditions significantly affected physiological activity of the grapevine. Both increased CO2 levels and adequate water supply increased photosynthetic activity for all treatment combinations. Newly planted vines were photosynthetically more active and reacted more strongly to treatments than slightly older vines. The higher temperature treatment seemed to impair photosynthesis under comparable CO2 and H2O conditions, especially with regards to very young vines. The effect of temperature on vegetative growth was insignificant compared to the CO2 and H2O effects and only seemed to affect initial growth directly after planting. The availability of water was critical to root, shoot and leaf growth – higher CO2 levels further enhanced vegetative growth.
The results indicate that the importance and impact of the climatic variables and the vine reaction change during the growth season. The strong interactions found between weeks after planting, available water, ambient temperature and CO2 levels necessitate multi-variable research on the effect of changing climatic factors on the grapevine.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

H. THERON 1,2*, C.G. VOLSCHENK 3, J.J. HUNTER 3

1 Cape Peninsula University of Technology (CPUT), Wellington, South Africa
2 University of Stellenbosch (US), Stellenbosch, South Africa
3 ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa

Contact the author

Keywords

Climate change, Grapevine, CO2, Temperature; Water deficit, Growth, Physiology

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

What drives Indications of Geographical Origin protection and governance mechanisms in the U.S. and European contexts? A contribution of the social sciences

There are fundamentally two different ways in which indications of geographical origin (igos) can be protected. The us approach favors the pre-existing trademark system through collective marks (cms), while the eu approach favors a maximalist approach via a sui generis system which promotes appellations of origin (aos). A consensus however emerges regarding the fundamental protection of origin against misleading, confusing and dilutive uses. Previous literature discusses these competing igo logics from historical, legal and international trade perspectives. In this paper, we depart from the field of social sciences, in particular from recent advancements in the well-established literature on proximities, in order to provide a reflection on the different logics underpinning the aos and cms systems.

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.