GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of changing climatic factors on physiological and vegetative growth

Impact of changing climatic factors on physiological and vegetative growth

Abstract

Context and purpose of the study – scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Material and methods – four glass house compartments were set up with combinations of the two main environmental factors, namely ambient temperature and CO2. Within each compartment, another treatment factor, water supply, was introduced. Young, grafted grapevines were established in pots in a randomized block design. Five growth cycles of 12 weeks each were monitored, with Shiraz as scion cultivar in three of them and Merlot in the other two. The rootstock used throughout was 101-14 Mgt. Vegetative and physiological growth parameters were measured throughout the growth cycles with critical sampling times at 4, 8 and 12 weeks after planting.

Results – a change in environmental growth conditions significantly affected physiological activity of the grapevine. Both increased CO2 levels and adequate water supply increased photosynthetic activity for all treatment combinations. Newly planted vines were photosynthetically more active and reacted more strongly to treatments than slightly older vines. The higher temperature treatment seemed to impair photosynthesis under comparable CO2 and H2O conditions, especially with regards to very young vines. The effect of temperature on vegetative growth was insignificant compared to the CO2 and H2O effects and only seemed to affect initial growth directly after planting. The availability of water was critical to root, shoot and leaf growth – higher CO2 levels further enhanced vegetative growth.
The results indicate that the importance and impact of the climatic variables and the vine reaction change during the growth season. The strong interactions found between weeks after planting, available water, ambient temperature and CO2 levels necessitate multi-variable research on the effect of changing climatic factors on the grapevine.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

H. THERON 1,2*, C.G. VOLSCHENK 3, J.J. HUNTER 3

1 Cape Peninsula University of Technology (CPUT), Wellington, South Africa
2 University of Stellenbosch (US), Stellenbosch, South Africa
3 ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa

Contact the author

Keywords

Climate change, Grapevine, CO2, Temperature; Water deficit, Growth, Physiology

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density