GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of changing climatic factors on physiological and vegetative growth

Impact of changing climatic factors on physiological and vegetative growth

Abstract

Context and purpose of the study – scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Material and methods – four glass house compartments were set up with combinations of the two main environmental factors, namely ambient temperature and CO2. Within each compartment, another treatment factor, water supply, was introduced. Young, grafted grapevines were established in pots in a randomized block design. Five growth cycles of 12 weeks each were monitored, with Shiraz as scion cultivar in three of them and Merlot in the other two. The rootstock used throughout was 101-14 Mgt. Vegetative and physiological growth parameters were measured throughout the growth cycles with critical sampling times at 4, 8 and 12 weeks after planting.

Results – a change in environmental growth conditions significantly affected physiological activity of the grapevine. Both increased CO2 levels and adequate water supply increased photosynthetic activity for all treatment combinations. Newly planted vines were photosynthetically more active and reacted more strongly to treatments than slightly older vines. The higher temperature treatment seemed to impair photosynthesis under comparable CO2 and H2O conditions, especially with regards to very young vines. The effect of temperature on vegetative growth was insignificant compared to the CO2 and H2O effects and only seemed to affect initial growth directly after planting. The availability of water was critical to root, shoot and leaf growth – higher CO2 levels further enhanced vegetative growth.
The results indicate that the importance and impact of the climatic variables and the vine reaction change during the growth season. The strong interactions found between weeks after planting, available water, ambient temperature and CO2 levels necessitate multi-variable research on the effect of changing climatic factors on the grapevine.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

H. THERON 1,2*, C.G. VOLSCHENK 3, J.J. HUNTER 3

1 Cape Peninsula University of Technology (CPUT), Wellington, South Africa
2 University of Stellenbosch (US), Stellenbosch, South Africa
3 ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa

Contact the author

Keywords

Climate change, Grapevine, CO2, Temperature; Water deficit, Growth, Physiology

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Valpolicella is a famous wine producing region located in the north of Verona close to Garda lake and owes its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. Nowadays the production of another PDO, Valpolicella Superiore is gaining more attention by the consumers, increasing the interest of the wineries to improve the quality of this wines

“Terroir” and grape and wine quality of native grape variety Istrian Malvasia

Viticulture and wine production have a historical tradition in Istria. First written document of vine cultivation in this area date since antiquity. The most wide spread vine variety in Istria is Istrian Malvasia (white variety), and it capture about 60% of total vineyard surface in Istria today.

Use of the stics crop model as a tool to inform vineyard zonages

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.