GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Abstract

Context and purpose of the study – Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information. The objective of this study was to evaluate the effect of spatial resolution on the accuracy of LAI estimation using different spatial resolutions: Landsat8 (30 m), Sentinel-2 (10 m) and UAV Multispectral images (0.05 m).

Material and methods – This study was carried out in a dryland vineyard cv. Pinotage situated in Stellenbosch, at the Welgevallen experimental farm (33°57’8” S, 18°52’26” E). The block (1.9 ha) has a North-South orientation and was planted on a West-South-West slope. The vines are trained on a sevenwire (moveable) hedge trellis, VSP (vertical shoot positioning) system. Three sources of remote sensing data, with different spatial resolutions, were chosen: i) Multispectral images acquired by a multi-rotor unmanned aerial vehicle (UAV) (spatial resolution 0.052 m); ii) Landsat 8 images (spatial resolution of 30 m) and iii) Sentinel-2A images (spatial resolution of 30 m). Images from these three sources were used to calculate the normalised difference vegetation index (NDVI) from the experimental site, and these values were compared with field measurements (empirical LAI model).

Results – Results obtained from low-resolution satellite images show a poor accuracy in the estimation of LAI on a plant scale. The image resolution of Landsat 8 and Sentinel-2 was not high enough to differentiate between adjacent groups of vines. The UAV multispectral images obtained the best agreement with the field LAI measurements, due to the high resolution (0.052 m pixel size). It is evident with the results obtained that UAV imaging is the most appropriate and accurate monitoring methodology since this technology providing enough information to estimate LAI per plant.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Yolandi BARNARD1, Guillermo OLMEDO2, Albert STREVER1, Carlos POBLETE-ECHEVERRÍA1*

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 EEA Mendoza, Instituto Nacional de Tecnología Agropecuaria, Mendoza M5507EVY, Argentina

Contact the author

Keywords

Normalised Difference Vegetation Index (NDVI), Unmanned Aerial Vehicle (UAV), grid analysis, spatial variability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.

Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

The type of wine is determined by environmental, plant materials and human factors. These factors are numerous and interact together, which makes it difficult to determine the hierarchy of their effects

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

The AOC Saint-Emilion, one of the most prestigious in Bordeaux, is located on the right bank of the Dordogne upstream from Libourne. The vineyard is planted on Tertiary (Oligocene) and Quaternary geological formations, on which very varied soils have developed. Numerous studies have taken account of this heterogeneity and made it possible to better understand the functioning and viticultural potential of these soils (Duteau et al. 1981, Van Leeuwen, 1991).

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.