GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Abstract

Context and purpose of the study – Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information. The objective of this study was to evaluate the effect of spatial resolution on the accuracy of LAI estimation using different spatial resolutions: Landsat8 (30 m), Sentinel-2 (10 m) and UAV Multispectral images (0.05 m).

Material and methods – This study was carried out in a dryland vineyard cv. Pinotage situated in Stellenbosch, at the Welgevallen experimental farm (33°57’8” S, 18°52’26” E). The block (1.9 ha) has a North-South orientation and was planted on a West-South-West slope. The vines are trained on a sevenwire (moveable) hedge trellis, VSP (vertical shoot positioning) system. Three sources of remote sensing data, with different spatial resolutions, were chosen: i) Multispectral images acquired by a multi-rotor unmanned aerial vehicle (UAV) (spatial resolution 0.052 m); ii) Landsat 8 images (spatial resolution of 30 m) and iii) Sentinel-2A images (spatial resolution of 30 m). Images from these three sources were used to calculate the normalised difference vegetation index (NDVI) from the experimental site, and these values were compared with field measurements (empirical LAI model).

Results – Results obtained from low-resolution satellite images show a poor accuracy in the estimation of LAI on a plant scale. The image resolution of Landsat 8 and Sentinel-2 was not high enough to differentiate between adjacent groups of vines. The UAV multispectral images obtained the best agreement with the field LAI measurements, due to the high resolution (0.052 m pixel size). It is evident with the results obtained that UAV imaging is the most appropriate and accurate monitoring methodology since this technology providing enough information to estimate LAI per plant.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Yolandi BARNARD1, Guillermo OLMEDO2, Albert STREVER1, Carlos POBLETE-ECHEVERRÍA1*

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 EEA Mendoza, Instituto Nacional de Tecnología Agropecuaria, Mendoza M5507EVY, Argentina

Contact the author

Keywords

Normalised Difference Vegetation Index (NDVI), Unmanned Aerial Vehicle (UAV), grid analysis, spatial variability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.

Sustaining grape production under challenging climate change circumstances

Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves

Influence of the agronomic management on the aroma of Riesling wines

Nitrogen fertilisation of grapevines is known to influence not only plant development and production yield, but also yeast assimilable nitrogen (YAN). This parameter is related to the growth of yeast

Characterization of different clone candidates of xinomavro according to their phenolic composition

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Effect of vineyard nitrogen management on Souviginer gris wine sensory quality and aromatic compounds

Fungus-Resistant Grape (FRG) varieties represent a promising approach to address the challenges of climate change and sustainability in viticulture.