GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Abstract

Context and purpose of the study – Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information. The objective of this study was to evaluate the effect of spatial resolution on the accuracy of LAI estimation using different spatial resolutions: Landsat8 (30 m), Sentinel-2 (10 m) and UAV Multispectral images (0.05 m).

Material and methods – This study was carried out in a dryland vineyard cv. Pinotage situated in Stellenbosch, at the Welgevallen experimental farm (33°57’8” S, 18°52’26” E). The block (1.9 ha) has a North-South orientation and was planted on a West-South-West slope. The vines are trained on a sevenwire (moveable) hedge trellis, VSP (vertical shoot positioning) system. Three sources of remote sensing data, with different spatial resolutions, were chosen: i) Multispectral images acquired by a multi-rotor unmanned aerial vehicle (UAV) (spatial resolution 0.052 m); ii) Landsat 8 images (spatial resolution of 30 m) and iii) Sentinel-2A images (spatial resolution of 30 m). Images from these three sources were used to calculate the normalised difference vegetation index (NDVI) from the experimental site, and these values were compared with field measurements (empirical LAI model).

Results – Results obtained from low-resolution satellite images show a poor accuracy in the estimation of LAI on a plant scale. The image resolution of Landsat 8 and Sentinel-2 was not high enough to differentiate between adjacent groups of vines. The UAV multispectral images obtained the best agreement with the field LAI measurements, due to the high resolution (0.052 m pixel size). It is evident with the results obtained that UAV imaging is the most appropriate and accurate monitoring methodology since this technology providing enough information to estimate LAI per plant.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Yolandi BARNARD1, Guillermo OLMEDO2, Albert STREVER1, Carlos POBLETE-ECHEVERRÍA1*

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 EEA Mendoza, Instituto Nacional de Tecnología Agropecuaria, Mendoza M5507EVY, Argentina

Contact the author

Keywords

Normalised Difference Vegetation Index (NDVI), Unmanned Aerial Vehicle (UAV), grid analysis, spatial variability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Les AOC : un frein ou un moteur à l’innovation ? Retour sur l’histoire économique, scientifique, sociale et technique des vins d’appellation au XXe siècle en France

At a time when the world’s winegrowing industry is having to adapt to a number of challenges, winegrowers are wondering about the consequent changes they will have to make (grape varieties, changes in vineyard and cellar techniques). For winegrowers and consumers alike, there is also the question of how these changes will affect the taste of their wines. This research, based on the study of numerous sources and archives from the 20th century, some of which have never been published before, aims to show that, in the recent past, the winegrowing world has shown incredible resilience in the face of crises, and that the taste and perception of fine wines has changed considerably in 100 years.

New ways of grape pomaces valorization: production of functional beverages or nutraceuticals

The wine industry generates each year 20 million tons of by-products. Among them grape pomaces represent a big part that can be considered as a source of potentially bioactive molecules such as polyphenols. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called scoby.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.