GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Abstract

Context and purpose of the study – Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information. The objective of this study was to evaluate the effect of spatial resolution on the accuracy of LAI estimation using different spatial resolutions: Landsat8 (30 m), Sentinel-2 (10 m) and UAV Multispectral images (0.05 m).

Material and methods – This study was carried out in a dryland vineyard cv. Pinotage situated in Stellenbosch, at the Welgevallen experimental farm (33°57’8” S, 18°52’26” E). The block (1.9 ha) has a North-South orientation and was planted on a West-South-West slope. The vines are trained on a sevenwire (moveable) hedge trellis, VSP (vertical shoot positioning) system. Three sources of remote sensing data, with different spatial resolutions, were chosen: i) Multispectral images acquired by a multi-rotor unmanned aerial vehicle (UAV) (spatial resolution 0.052 m); ii) Landsat 8 images (spatial resolution of 30 m) and iii) Sentinel-2A images (spatial resolution of 30 m). Images from these three sources were used to calculate the normalised difference vegetation index (NDVI) from the experimental site, and these values were compared with field measurements (empirical LAI model).

Results – Results obtained from low-resolution satellite images show a poor accuracy in the estimation of LAI on a plant scale. The image resolution of Landsat 8 and Sentinel-2 was not high enough to differentiate between adjacent groups of vines. The UAV multispectral images obtained the best agreement with the field LAI measurements, due to the high resolution (0.052 m pixel size). It is evident with the results obtained that UAV imaging is the most appropriate and accurate monitoring methodology since this technology providing enough information to estimate LAI per plant.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Yolandi BARNARD1, Guillermo OLMEDO2, Albert STREVER1, Carlos POBLETE-ECHEVERRÍA1*

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 EEA Mendoza, Instituto Nacional de Tecnología Agropecuaria, Mendoza M5507EVY, Argentina

Contact the author

Keywords

Normalised Difference Vegetation Index (NDVI), Unmanned Aerial Vehicle (UAV), grid analysis, spatial variability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Vulnerability of vineyard soils to compaction: the case study of DOC Piave (Veneto region, Italy)

The objective of this work is to study the vulnerability of vineyard soil to compaction.

Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.