GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Abstract

Context and purpose of the study – Viticultural potential has a complex conditioning, determined by relief, soil, climate and lithology. Delineation of viticultural potential from vineyard areas is essential for the purpose to collect the necessary data for viticultural zoning. Using this data, we can achieve greater yield quality, which is the most important criteria in viticulture. The main purpose of this research is characterizing of viticultural potential and zoning of homogeneous viticultural zones in Goriška Brda region by assessing the suitability of defined ecological factors.

Material and methods – Fourteen environmental factors, which represent relief, climate, soil and lithology, were used to evaluate and determine the viticultural potential which is further delimited in homogeneous viticultural zones within Goriška Brda study site, characterized by a mild Mediterranean climate. Each zone was described in terms of its viticultural potential, which expresses the types of wine that can be produced according to its ecological suitability. The spatial distributions of the environmental parameters were achieved using GIS-based multicriteria methodology. Spatial analysis was conducted at fine scale.

Results – Inside of study area, there were defined three zones with different viticultural potential, indicating the wine types that can be produced: a zone suitable for quality white wines and red table wines; a zone suitable for quality white wines; a zone suitable for sparkling and white table wines and wines for distillates. These zones make up the viticulture potential map of Goriška Brda study site. The south-western area, closer to the Mediterranean Sea, was defined as mainly suitable to produce quality white wines. Nevertheless, the north-eastern part was defined as suitable for production of mainly white table wines, sparkling wines, and wines for distillates. This research provides a map of viticultural potential and delimitate viticultural homogeneous zones for the winegrowing area of Goriška Brda. It also provides a spatial analysis of the ecological structure with suitability of ecological factors for different wine types. The results reveal the high spatial variability of the viticultural potential when analyzed at fine scale.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Igor SIRNIK1,2*, Hervé QUENOL1, Miguel Angel JIMÉNEZ-BELLO2, Juan MANZANO3, Liviu Mihai IRIVIA4, Cristian V. PATRICHE5, Ana ŽUST6

1 COSTEL, UMR6554 LETG CNRS, Université Rennes 2, France
2 Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Spain.
3 Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Spain
4 University of Agricultural Sciences and Veterinary Medicine, Romania
5 Romanian Academy, Department of Iași, Geography Group, 8 Carol I, 700505 Iași, Romania
6 Slovenian Environment Agency, Vojkova 1b, Ljubljana, Slovenia

Contact the author

Keywords

zoning, GIS, grapevine, environmental factors, wine types, Slovenia

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.