GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Abstract

Context and purpose of the study – Viticultural potential has a complex conditioning, determined by relief, soil, climate and lithology. Delineation of viticultural potential from vineyard areas is essential for the purpose to collect the necessary data for viticultural zoning. Using this data, we can achieve greater yield quality, which is the most important criteria in viticulture. The main purpose of this research is characterizing of viticultural potential and zoning of homogeneous viticultural zones in Goriška Brda region by assessing the suitability of defined ecological factors.

Material and methods – Fourteen environmental factors, which represent relief, climate, soil and lithology, were used to evaluate and determine the viticultural potential which is further delimited in homogeneous viticultural zones within Goriška Brda study site, characterized by a mild Mediterranean climate. Each zone was described in terms of its viticultural potential, which expresses the types of wine that can be produced according to its ecological suitability. The spatial distributions of the environmental parameters were achieved using GIS-based multicriteria methodology. Spatial analysis was conducted at fine scale.

Results – Inside of study area, there were defined three zones with different viticultural potential, indicating the wine types that can be produced: a zone suitable for quality white wines and red table wines; a zone suitable for quality white wines; a zone suitable for sparkling and white table wines and wines for distillates. These zones make up the viticulture potential map of Goriška Brda study site. The south-western area, closer to the Mediterranean Sea, was defined as mainly suitable to produce quality white wines. Nevertheless, the north-eastern part was defined as suitable for production of mainly white table wines, sparkling wines, and wines for distillates. This research provides a map of viticultural potential and delimitate viticultural homogeneous zones for the winegrowing area of Goriška Brda. It also provides a spatial analysis of the ecological structure with suitability of ecological factors for different wine types. The results reveal the high spatial variability of the viticultural potential when analyzed at fine scale.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Igor SIRNIK1,2*, Hervé QUENOL1, Miguel Angel JIMÉNEZ-BELLO2, Juan MANZANO3, Liviu Mihai IRIVIA4, Cristian V. PATRICHE5, Ana ŽUST6

1 COSTEL, UMR6554 LETG CNRS, Université Rennes 2, France
2 Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Spain.
3 Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Spain
4 University of Agricultural Sciences and Veterinary Medicine, Romania
5 Romanian Academy, Department of Iași, Geography Group, 8 Carol I, 700505 Iași, Romania
6 Slovenian Environment Agency, Vojkova 1b, Ljubljana, Slovenia

Contact the author

Keywords

zoning, GIS, grapevine, environmental factors, wine types, Slovenia

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

The effects of soil health management practices on soil organic carbon persistence and accrual in vineyards

Context and purpose of the study. Climate change is already threatening California vineyards, as they grapple with increasing extreme weather events and drier growing seasons.