GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Abstract

Context and purpose of the study – Viticultural potential has a complex conditioning, determined by relief, soil, climate and lithology. Delineation of viticultural potential from vineyard areas is essential for the purpose to collect the necessary data for viticultural zoning. Using this data, we can achieve greater yield quality, which is the most important criteria in viticulture. The main purpose of this research is characterizing of viticultural potential and zoning of homogeneous viticultural zones in Goriška Brda region by assessing the suitability of defined ecological factors.

Material and methods – Fourteen environmental factors, which represent relief, climate, soil and lithology, were used to evaluate and determine the viticultural potential which is further delimited in homogeneous viticultural zones within Goriška Brda study site, characterized by a mild Mediterranean climate. Each zone was described in terms of its viticultural potential, which expresses the types of wine that can be produced according to its ecological suitability. The spatial distributions of the environmental parameters were achieved using GIS-based multicriteria methodology. Spatial analysis was conducted at fine scale.

Results – Inside of study area, there were defined three zones with different viticultural potential, indicating the wine types that can be produced: a zone suitable for quality white wines and red table wines; a zone suitable for quality white wines; a zone suitable for sparkling and white table wines and wines for distillates. These zones make up the viticulture potential map of Goriška Brda study site. The south-western area, closer to the Mediterranean Sea, was defined as mainly suitable to produce quality white wines. Nevertheless, the north-eastern part was defined as suitable for production of mainly white table wines, sparkling wines, and wines for distillates. This research provides a map of viticultural potential and delimitate viticultural homogeneous zones for the winegrowing area of Goriška Brda. It also provides a spatial analysis of the ecological structure with suitability of ecological factors for different wine types. The results reveal the high spatial variability of the viticultural potential when analyzed at fine scale.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Igor SIRNIK1,2*, Hervé QUENOL1, Miguel Angel JIMÉNEZ-BELLO2, Juan MANZANO3, Liviu Mihai IRIVIA4, Cristian V. PATRICHE5, Ana ŽUST6

1 COSTEL, UMR6554 LETG CNRS, Université Rennes 2, France
2 Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Spain.
3 Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Spain
4 University of Agricultural Sciences and Veterinary Medicine, Romania
5 Romanian Academy, Department of Iași, Geography Group, 8 Carol I, 700505 Iași, Romania
6 Slovenian Environment Agency, Vojkova 1b, Ljubljana, Slovenia

Contact the author

Keywords

zoning, GIS, grapevine, environmental factors, wine types, Slovenia

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

The drought, the temperature, and the time: drivers of osmotic adjustment?

Context and purpose of the study. Leaf osmotic adjustment (i.e., active accumulation of osmolytes in the cells) has been reported in grapevines in response to drought and as a natural process throughout the growing season (seasonal osmotic adjustment).

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.