GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Digitising the vineyard: developing new technologies for viticulture in Australia 

Digitising the vineyard: developing new technologies for viticulture in Australia 

Abstract

Context and purpose of the study – New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season. That same imaging may also provide whole of vineyard data on vine nutrition or early warning of disease, allowing proactive management on a rapid timescale. We are working with a range of technologies to develop such capabilities for Australian viticulture.
Material and methods – A variety of technologies are being deployed at the whole block scale to address a number of management questions. Early indicators of yield variation are being assessed shortly after budburst, using video imaging with consumer video cameras and machine learning, to determine inflorescence numbers. Canopy growth and structure are being monitored using (i) photogrammetry with drones imagery, (ii) video imaging from vehicles and (iii) a spinning LiDAR system using Simultaneous Localisation and Mapping (SLAM) to register the data. The latter is also being used to develop novel indices of canopy structure. Hyperspectral imaging is being used to segment vine images into their constituent parts and analyse them for fruit and canopy composition and presence of disease. Finally, yield estimation from veraison onwards is being developed using (i) video imaging in daylight, (ii) digital imaging with depth perception and (iii) foliage penetrating (FOPEN) technology. These technologies are being trialed at commercial vineyards in multiple winegrape growing regions of South Australia, concentrating on vines grown with the locally common ‘Australian sprawl’ trellis type, where the fruit are typically highly occluded by leaves, compared to vertical shoot position trellis types.
Results – The technologies described are at various stages of development, from the lab to field application at vineyard scale, but all have produced results with potential commercial application. Initial imaging work with inflorescence counts produced 94% accuracy; a preliminary pipeline to analyse drone imagery with depth data from photogrammetry for estimating vine cover irrespective of cover crop has been developed; a preliminary pipeline to analyse video imagery from the ground and map canopy gap fraction and leaf area index has been developed; the ability to accurately register 3D LiDAR data using SLAM and only basic GPS data has been demonstrated and use the results to develop models of seasonal light interception and indices of canopy light penetration; further, the ability of the FOPEN to determine the presence of fruit within a ‘sprawl’ canopy has been demonstrated.We are continuing to develop these technologies and apply them at the whole block scale in order to produce accurate yield estimates that do not rely on point measurements and spatial maps to allow fine-grained vineyard management decisions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Everard J. EDWARDS1*, Mark R. THOMAS1, Stephen GENSEMER2, Peyman MOGHADAM3, Thomas LOWE3, Dadong WANG4, Ryan LAGERSTROM4, Chad HARGRAVE5, Jonathon RALSTON5

CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Manufacturing, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Data61, PO BOX 883, Kenmore, QLD 4069, Australia
CSIRO Data61, PO BOX 76, Epping, NSW 1710, Australia
CSIRO Energy, PO BOX 883, Kenmore, QLD 4069, Australia

Contact the author

Keywords

digital technologies, FOPEN, LiDAR, photogrammetry, proximal sensing, RGB imaging, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability

Grapevine Shiraz disease-associated viruses lead to yield losses by altering transcription of genes

Context and Purpose of Study. Grapevine Shiraz disease (SD), which is associated with Grapevine Virus A (GVA), is one of the highly destructive diseases affecting Australian and South African vineyards.