GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Digitising the vineyard: developing new technologies for viticulture in Australia 

Digitising the vineyard: developing new technologies for viticulture in Australia 

Abstract

Context and purpose of the study – New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season. That same imaging may also provide whole of vineyard data on vine nutrition or early warning of disease, allowing proactive management on a rapid timescale. We are working with a range of technologies to develop such capabilities for Australian viticulture.
Material and methods – A variety of technologies are being deployed at the whole block scale to address a number of management questions. Early indicators of yield variation are being assessed shortly after budburst, using video imaging with consumer video cameras and machine learning, to determine inflorescence numbers. Canopy growth and structure are being monitored using (i) photogrammetry with drones imagery, (ii) video imaging from vehicles and (iii) a spinning LiDAR system using Simultaneous Localisation and Mapping (SLAM) to register the data. The latter is also being used to develop novel indices of canopy structure. Hyperspectral imaging is being used to segment vine images into their constituent parts and analyse them for fruit and canopy composition and presence of disease. Finally, yield estimation from veraison onwards is being developed using (i) video imaging in daylight, (ii) digital imaging with depth perception and (iii) foliage penetrating (FOPEN) technology. These technologies are being trialed at commercial vineyards in multiple winegrape growing regions of South Australia, concentrating on vines grown with the locally common ‘Australian sprawl’ trellis type, where the fruit are typically highly occluded by leaves, compared to vertical shoot position trellis types.
Results – The technologies described are at various stages of development, from the lab to field application at vineyard scale, but all have produced results with potential commercial application. Initial imaging work with inflorescence counts produced 94% accuracy; a preliminary pipeline to analyse drone imagery with depth data from photogrammetry for estimating vine cover irrespective of cover crop has been developed; a preliminary pipeline to analyse video imagery from the ground and map canopy gap fraction and leaf area index has been developed; the ability to accurately register 3D LiDAR data using SLAM and only basic GPS data has been demonstrated and use the results to develop models of seasonal light interception and indices of canopy light penetration; further, the ability of the FOPEN to determine the presence of fruit within a ‘sprawl’ canopy has been demonstrated.We are continuing to develop these technologies and apply them at the whole block scale in order to produce accurate yield estimates that do not rely on point measurements and spatial maps to allow fine-grained vineyard management decisions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Everard J. EDWARDS1*, Mark R. THOMAS1, Stephen GENSEMER2, Peyman MOGHADAM3, Thomas LOWE3, Dadong WANG4, Ryan LAGERSTROM4, Chad HARGRAVE5, Jonathon RALSTON5

CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Manufacturing, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Data61, PO BOX 883, Kenmore, QLD 4069, Australia
CSIRO Data61, PO BOX 76, Epping, NSW 1710, Australia
CSIRO Energy, PO BOX 883, Kenmore, QLD 4069, Australia

Contact the author

Keywords

digital technologies, FOPEN, LiDAR, photogrammetry, proximal sensing, RGB imaging, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Delimitation of Saint-Bris AOC: example of reasonning delimitation criteria from production customs

La définition de l’Appellation d’Origine précise que les caractères du produit doivent être dus au milieu géographique, celui-ci intégrant des facteurs naturels et humains.

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO 624-2022).

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures