GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Digitising the vineyard: developing new technologies for viticulture in Australia 

Digitising the vineyard: developing new technologies for viticulture in Australia 

Abstract

Context and purpose of the study – New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season. That same imaging may also provide whole of vineyard data on vine nutrition or early warning of disease, allowing proactive management on a rapid timescale. We are working with a range of technologies to develop such capabilities for Australian viticulture.
Material and methods – A variety of technologies are being deployed at the whole block scale to address a number of management questions. Early indicators of yield variation are being assessed shortly after budburst, using video imaging with consumer video cameras and machine learning, to determine inflorescence numbers. Canopy growth and structure are being monitored using (i) photogrammetry with drones imagery, (ii) video imaging from vehicles and (iii) a spinning LiDAR system using Simultaneous Localisation and Mapping (SLAM) to register the data. The latter is also being used to develop novel indices of canopy structure. Hyperspectral imaging is being used to segment vine images into their constituent parts and analyse them for fruit and canopy composition and presence of disease. Finally, yield estimation from veraison onwards is being developed using (i) video imaging in daylight, (ii) digital imaging with depth perception and (iii) foliage penetrating (FOPEN) technology. These technologies are being trialed at commercial vineyards in multiple winegrape growing regions of South Australia, concentrating on vines grown with the locally common ‘Australian sprawl’ trellis type, where the fruit are typically highly occluded by leaves, compared to vertical shoot position trellis types.
Results – The technologies described are at various stages of development, from the lab to field application at vineyard scale, but all have produced results with potential commercial application. Initial imaging work with inflorescence counts produced 94% accuracy; a preliminary pipeline to analyse drone imagery with depth data from photogrammetry for estimating vine cover irrespective of cover crop has been developed; a preliminary pipeline to analyse video imagery from the ground and map canopy gap fraction and leaf area index has been developed; the ability to accurately register 3D LiDAR data using SLAM and only basic GPS data has been demonstrated and use the results to develop models of seasonal light interception and indices of canopy light penetration; further, the ability of the FOPEN to determine the presence of fruit within a ‘sprawl’ canopy has been demonstrated.We are continuing to develop these technologies and apply them at the whole block scale in order to produce accurate yield estimates that do not rely on point measurements and spatial maps to allow fine-grained vineyard management decisions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Everard J. EDWARDS1*, Mark R. THOMAS1, Stephen GENSEMER2, Peyman MOGHADAM3, Thomas LOWE3, Dadong WANG4, Ryan LAGERSTROM4, Chad HARGRAVE5, Jonathon RALSTON5

CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Manufacturing, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Data61, PO BOX 883, Kenmore, QLD 4069, Australia
CSIRO Data61, PO BOX 76, Epping, NSW 1710, Australia
CSIRO Energy, PO BOX 883, Kenmore, QLD 4069, Australia

Contact the author

Keywords

digital technologies, FOPEN, LiDAR, photogrammetry, proximal sensing, RGB imaging, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

«Promitheus» the new greek red wine grape arromatic variety

This paper presents is the create, the study and amplographic description the newGreek aromatic variety of red wine grapes “Promitheus”, created in 2012

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

On-farm monitoring of grapevine water and nitrogen status in relation to different soil management practices in Valais, Switzerland

In response to increasing societal demands for environmentally-friendly viticulture, winegrowers are adapting their cultivation techniques, particularly by reducing the use of herbicides.

Possible toxicological risk arising from contamination of grapes and derivatives by emerging mycotoxins: patulin

Following the acquired awareness of the presence of ochratoxin A in grape derivatives, actions were undertaken to contain this contamination, and attempts were made to evaluate the presence of any other molecule belonging to this class.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.