GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Abstract

Context and purpose of the study – Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity. Moreover, most vineyard 3D model studies provide limited details on how they can be used to guide vineyard management. This study evaluated the accuracy of UAV-based canopy measurements, including canopy volume and NDVI and compared them with ground-based canopy measures, such as LAI and canopy porosity.

Material and methods – Throughout the 2017-18 growing season, UAV flights were performed to collect RGB and multispectral images in the research vineyard at the Waite Campus, University of Adelaide, South Australia. Using these images, canopy volume and NDVI were calculated. Ground-based measurements for LAI and canopy porosity were also carried out for comparison.

Results – LAI measured from budburst to harvest showed a peak at around veraison, before starting to decline. Similar trends were also observed in canopy volume and NDVI. Using linear regression, canopy volume of Shiraz and Semillon blocks showed a strong positive correlation with LAI (R2 = 0.75 and 0.68, respectively). NDVI was also positively correlated with LAI (R2 = 0.75 and 0.45 for Shiraz and Semillon, respectively). Canopy volume extracted from UAV-based RGB imagery could be used to monitor canopy development during the growing season. However, canopy volume has limited capacity to inform on important canopy architecture properties such as leaf density, total leaf area and porosity, known to affect yield and fruit quality. The accuracy of NDVI was also found to be strongly affected by the presence of vegetation on the vineyard floor at early development stages.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jingyun OUYANG1, Roberta DE BEI1, Bertram OSTENDORF2, Cassandra COLLINS1*

1 The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
2 The University of Adelaide, School of Biological Sciences, Adelaide, 5000, South Australia. Australia

Contact the author

Keywords

remote sensing, unmanned aerial vehicle, leaf area index, canopy architecture, canopy volume, NDVI

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

Zonazione dell’area viticola doc durello

Il lavoro di zonazione riveste un ruolo importante per capire le potenzialità e la vocazionalità di una specifica area viticola. La viticoltura dovrebbe essere vista in funzione dell’obiettivo enologico che si vuole realizzare e quindi particolare importanza riveste il risultato delle vinificazioni delle uve provenienti dai vigneti delle diverse aree della zona di produzione oggetto d’indagine. La zonazione dell’area a DOC Monti Lessini Durello ha preso in esame la varietà “Durella”, vitigno autoctono del territorio, che rappresenta la maggior parte della produzione vitivinicola della zona.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.