GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Abstract

Context and purpose of the study – Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Material and methods – A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterwards, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal.

Results – The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also one week after recovery from flooding with the exception of ethanol that levelled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine’s root responses and in the coordination of scion-rootstock signaling during and after exposure to waterlogging.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Benedetto RUPERTI1,2,3, Alessandro BOTTON1,2,3, Francesca POPULIN1, Giulia ECCHER1, Matteo BRILLI4, Silvia QUAGGIOTTI1,3, Sara TREVISAN1, Nadia CAINELLI1, Paola GUARRACINO3, Elisabetta SCHIEVANO3, Franco MEGGIO*1

1 Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy
2 Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
3 CRIBI Biotechnology Centre, University of Padova, Padova, Italy
4 Department of Biosciences, University of Milan, Via Giovanni Celoria 26 – 20133 Milano, Italy 5Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy

Contact the author

Keywords

waterlogging, hypoxia, root, transcriptome, gene expression, Vitis

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Dissecting the dual role of light regarding the plasticity of grape physiology and gene regulation through daylength simulation in a semi-arid region

Context and purpose of the study. Daylength is a key climatic factor within the terroir concept. However, the complex interplay of multiple variables in regions with varying daylengths makes it challenging to isolate and investigate this specific factor.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Reconfiguring wine prescription : from traditional critics to digital social networks

The integration of digital social networks (DSN) has profoundly transformed communication practices within the wine industry, reorganizing the dynamics of prescription and marketing.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

One of the reasons of the spread of grapevine virus diseases in
vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation
specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and
maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.