GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Abstract

Context and purpose of the study – Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Material and methods – A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterwards, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal.

Results – The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also one week after recovery from flooding with the exception of ethanol that levelled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine’s root responses and in the coordination of scion-rootstock signaling during and after exposure to waterlogging.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Benedetto RUPERTI1,2,3, Alessandro BOTTON1,2,3, Francesca POPULIN1, Giulia ECCHER1, Matteo BRILLI4, Silvia QUAGGIOTTI1,3, Sara TREVISAN1, Nadia CAINELLI1, Paola GUARRACINO3, Elisabetta SCHIEVANO3, Franco MEGGIO*1

1 Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy
2 Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
3 CRIBI Biotechnology Centre, University of Padova, Padova, Italy
4 Department of Biosciences, University of Milan, Via Giovanni Celoria 26 – 20133 Milano, Italy 5Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy

Contact the author

Keywords

waterlogging, hypoxia, root, transcriptome, gene expression, Vitis

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A microbial overview of txakoli wine: the case of three appellations of origin

The Txakoli, a white wine produced in the Basque Country (North of Spain), has recently gained popularity due to wine quality improvement and increase in both acreages of production and wine consumption. The aim of this study was to characterize the chemical and microbiological differences between Txakoli wines made with grapes from different sites.

Kimmeridgian age in Chablis: a geological argument for the social building of a terroir

Situated at the beginning of the 20th century on the territory of the Chablis municipality, delimited according to specialists of the time to plots of “kimmeridgian” origin, the vineyard producing Chablis

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Different oxygen and sulphur dioxide concentrations in ‘Sauvignon blanc’ must: effect on the composition of the must and wine

The effects of different oxygen and sulphur dioxide additions to South African ‘Sauvignon blanc’ musts were investigated. Oxygen addition without SO2 protection led to lower levels of certain volatile thiols in the wines, with a corresponding decrease in certain phenols and glutathione concentrations.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.