GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Abstract

Context and purpose of the study – Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Material and methods – A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterwards, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal.

Results – The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also one week after recovery from flooding with the exception of ethanol that levelled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine’s root responses and in the coordination of scion-rootstock signaling during and after exposure to waterlogging.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Benedetto RUPERTI1,2,3, Alessandro BOTTON1,2,3, Francesca POPULIN1, Giulia ECCHER1, Matteo BRILLI4, Silvia QUAGGIOTTI1,3, Sara TREVISAN1, Nadia CAINELLI1, Paola GUARRACINO3, Elisabetta SCHIEVANO3, Franco MEGGIO*1

1 Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy
2 Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
3 CRIBI Biotechnology Centre, University of Padova, Padova, Italy
4 Department of Biosciences, University of Milan, Via Giovanni Celoria 26 – 20133 Milano, Italy 5Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy

Contact the author

Keywords

waterlogging, hypoxia, root, transcriptome, gene expression, Vitis

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

l lavoro presenta l’evoluzione dei contenuti di arsenico nelle uve durante lo sviluppo e la maturazione, e la sua distribuzione nell’acino; verifica inoltre la relazione tra i contenuti di As nelle uve

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.

Sensory profile: a tool to characterize originality of wines produced without sulfites

A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process. METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated