OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Grape seed powder as an alternative to bentonite for wine fining

Grape seed powder as an alternative to bentonite for wine fining

Abstract

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds. This work studied the use of grape seeds powder (GSP) to remove haze-forming proteins from wine and grape juice. GSP was tried both roasted 180°C x 10 minutes and unroasted, while contact time was set at one hour and two hours for comparison. GSP was tried first on four different heat-unstable wines in small-scale experiments. The results showed that GSP removed PR proteins and permitted to achieve heat stability (DNTU<2) but with high doses (25-32 g/L) of addition. A similar reduction of PR proteins was obtained in all the wines after 1-h contact time with unroasted GSP as wells as with roasted GSP, which suggests that roasting did not substantially alter the protein-binding capability of GSP. Contact time (1 or 2 hours) did not change the efficacy of protein removal suggesting that the reaction between grape tannins and proteins occurs within one hour. Treated wines showed changes in the matrix composition, with increased phenolic contents (A280) and improved yellow color (CIELAB b* parameter). As for the experiments with grape juice, GSP was added in two juices before fermentation to observe the impact on the composition of the finished wines. Roasted GSP was chosen as the fining agent and the contact time was 1 hour. A lower amount of GSP (5 g/L) was observed to be needed to heat-stabilize (DNTU<2) the juices. The corresponding wines showed minor changes in the matrix composition, perhaps because of phenolic-protein interaction and precipitation during the fermentation or degradation via non-enzymatic processes. These results suggested that GSP may be a viable alternative to bentonite. Furthermore, being a by-product of winemaking, GSP utilization would improve the environmental sustainability of winemaking processes.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Elia Romanini, Jacqui M. McRae, Donato Colangelo, Milena Lambri

The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae (Adelaide), PO Box 197, Glen Osmond, SA 5064, Australia.
UniversitàCattolica del Sacro Cuore – DiSTAS Via Emilia Parmense, 84, 29122 Piacenza, Italy.

Contact the author

Keywords

grape seeds, bentonite, fining, hazing proteins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production.