OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Grape seed powder as an alternative to bentonite for wine fining

Grape seed powder as an alternative to bentonite for wine fining

Abstract

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds. This work studied the use of grape seeds powder (GSP) to remove haze-forming proteins from wine and grape juice. GSP was tried both roasted 180°C x 10 minutes and unroasted, while contact time was set at one hour and two hours for comparison. GSP was tried first on four different heat-unstable wines in small-scale experiments. The results showed that GSP removed PR proteins and permitted to achieve heat stability (DNTU<2) but with high doses (25-32 g/L) of addition. A similar reduction of PR proteins was obtained in all the wines after 1-h contact time with unroasted GSP as wells as with roasted GSP, which suggests that roasting did not substantially alter the protein-binding capability of GSP. Contact time (1 or 2 hours) did not change the efficacy of protein removal suggesting that the reaction between grape tannins and proteins occurs within one hour. Treated wines showed changes in the matrix composition, with increased phenolic contents (A280) and improved yellow color (CIELAB b* parameter). As for the experiments with grape juice, GSP was added in two juices before fermentation to observe the impact on the composition of the finished wines. Roasted GSP was chosen as the fining agent and the contact time was 1 hour. A lower amount of GSP (5 g/L) was observed to be needed to heat-stabilize (DNTU<2) the juices. The corresponding wines showed minor changes in the matrix composition, perhaps because of phenolic-protein interaction and precipitation during the fermentation or degradation via non-enzymatic processes. These results suggested that GSP may be a viable alternative to bentonite. Furthermore, being a by-product of winemaking, GSP utilization would improve the environmental sustainability of winemaking processes.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Elia Romanini, Jacqui M. McRae, Donato Colangelo, Milena Lambri

The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae (Adelaide), PO Box 197, Glen Osmond, SA 5064, Australia.
UniversitàCattolica del Sacro Cuore – DiSTAS Via Emilia Parmense, 84, 29122 Piacenza, Italy.

Contact the author

Keywords

grape seeds, bentonite, fining, hazing proteins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Where the sky is no limit — The transformation of wine marketing through text-to-video generation AI model

The introduction of ai-driven tools in digital content creation represents a significant shift in the landscape of marketing, particularly for industries reliant on rich visual storytelling such as the wine sector. The development of ai models like openai’s sora, runway’s gen-2 or google’s lumiere, which can generate realistic video content from textual descriptions, offers promising new avenues for enhancing brand narrative and consumer engagement. This research explores the potential of text-to-video (t2v) ai models to revolutionize wine marketing by creating dynamic, engaging content that captures the essence of vineyards and their products without the need for traditional video production processes.

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.

Factors influencing cover crop water competition in vineyards and implications for future drought adaptation

Vineyard water management in Australia is often associated with irrigation in warm and hot climates, but in cooler regions the larger share of the seasonal water demand is met by rainfall.

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.

La zonazione della valle d’Illasi (Verona)

In the bottom of Val d’Illasi (Verona province), one of the major valleys which passes through the Lessini mountains, viticulture is widely extended. In the territory belonging to Illasi and Tregnago villages, which includes ca. 1100 ha of vineyards, devoted to produce Soave and Valpolicella DOC wines, an experimental survey was conducted on a network of twenty five reference vineyards.