OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Grape seed powder as an alternative to bentonite for wine fining

Grape seed powder as an alternative to bentonite for wine fining

Abstract

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds. This work studied the use of grape seeds powder (GSP) to remove haze-forming proteins from wine and grape juice. GSP was tried both roasted 180°C x 10 minutes and unroasted, while contact time was set at one hour and two hours for comparison. GSP was tried first on four different heat-unstable wines in small-scale experiments. The results showed that GSP removed PR proteins and permitted to achieve heat stability (DNTU<2) but with high doses (25-32 g/L) of addition. A similar reduction of PR proteins was obtained in all the wines after 1-h contact time with unroasted GSP as wells as with roasted GSP, which suggests that roasting did not substantially alter the protein-binding capability of GSP. Contact time (1 or 2 hours) did not change the efficacy of protein removal suggesting that the reaction between grape tannins and proteins occurs within one hour. Treated wines showed changes in the matrix composition, with increased phenolic contents (A280) and improved yellow color (CIELAB b* parameter). As for the experiments with grape juice, GSP was added in two juices before fermentation to observe the impact on the composition of the finished wines. Roasted GSP was chosen as the fining agent and the contact time was 1 hour. A lower amount of GSP (5 g/L) was observed to be needed to heat-stabilize (DNTU<2) the juices. The corresponding wines showed minor changes in the matrix composition, perhaps because of phenolic-protein interaction and precipitation during the fermentation or degradation via non-enzymatic processes. These results suggested that GSP may be a viable alternative to bentonite. Furthermore, being a by-product of winemaking, GSP utilization would improve the environmental sustainability of winemaking processes.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Elia Romanini, Jacqui M. McRae, Donato Colangelo, Milena Lambri

The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae (Adelaide), PO Box 197, Glen Osmond, SA 5064, Australia.
UniversitàCattolica del Sacro Cuore – DiSTAS Via Emilia Parmense, 84, 29122 Piacenza, Italy.

Contact the author

Keywords

grape seeds, bentonite, fining, hazing proteins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).