GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

Abstract

In this work the first results obtained in the application of the “Charter of Sustainability Universal Holistic MetaEthic 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO (Carbonneau, Cargnello, 2017) will be exposed “Direct Certification and Direct Warranty of Sustainability 4.1C” applied in about twenty structures located in the hills and in the plain of the of Italy (North East).
The application of the ” Charter of the Sustainability Universal Holistic MetaEthics 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO was shared by more than 65% of compilers of the charter and this without any specific communication to the interviewees. This sharing rose more than 95% if the compilers of the form were titled or well-off and with a correct and appropriate communication and allowed us to overcome the imposition of sector limited protocols, unsustainable according to the “Viticulture Bio-MétaÉthique 4.1CC”, inconsistent with the main objective of the same certification, not applicable and/or difficult to apply anywhere.
We cite as an example the eco-friendly, organic and biodynamic viticulture we were able to eliminate the conflict of interests, unacceptable bureaucracy, unacceptable direct and indirect costs, the “confusion” in relation to “Sustainability”, “Certification”, “Guarantee” , to simplify the system and to identify and/or create peculiarities “Sustainable 4.1C”. We also contribute to the indexed harmonic growth “4.1C”: cultural, moral, civil, relational, “Policy” “MetaEthics 4.1C”, ethics, existential, social, occupational, environmental, economic, technical , as well as the growth of the self: choice, determination, responsibility, declaration, control, discipline, and the growth of process and product, rationalizing and containing costs “MetaEthically 4.1C”.
Important is also to make sure that everyone and everything are directly responsible for the role that is right and put their face directly. Hence the acronym of this certification: “CartaBIOSOSDIR4.1C of the Face” or “Let’s Put All the Face 4.1C” or “Certification by putting the Face” or “Certification of the Face 4.1C” or “Certification from the Face” or “Face Certification”, between a “Company BIO-MétaÉthique 4.1C” compared to a “Conventional Company”: the cost containment has fluctuated between 4% and 21% with peaks exceeding 25%.
The buyers willingness to pay more the wine has fluctuated between 6% and 21% with peaks of over 35%. The increase in total profit ranged from 9% to 21% with peaks that duplicated it.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1*, Gianni TEO1,2, Ruggero LUNARDELLI1, Giuseppe COFFELE1, Giorgio CECCHETTO1, Cesare FERRETTI1, Sergio FORNO1, Valerio BORTOLIN1, Lionello DA RIOS1, Daniele GIGANTE1, Stefano LUNARDELLI1, Sasha RADICON1, Edi KANTE1, Andrej SKERLJ1, Andrej BOLE1, Alessio PICININ1, Antonio KININGER1, Davide DANAU1, Marco RUPEL1, Renzo BONA1, Franco GIACOMIN1, Ivan RONCHI1, Gianmaria RIVA1, Danilo FERRARO1, Francesco DONATI1, Luigino BARISAN1,2, Matteo MASIN1,2, Claudio BONGHI1,2, Cristian BOLZONELLA2, Stefano SCAGGIANTE2

1 Conegliano Campus 5.1C, Conegliano (Italy)
2 University of Padua – Seat of Conegliano, Treviso (Italy)

Contact the author

Keywords

first results BioMétaÉthique sustainability 4.1CC, company, territory, BIO – MétaÉthique 4.1C district

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Waste-free production of non-alcoholic wine as a sustainable technology

The growing demand for non-alcoholic wines, along with issues related to waste disposal and environmental pollution amid military conflicts, natural disasters, and industrial emissions, necessitates the implementation of environmentally sustainable technologies in the winemaking industry.

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must.

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability