GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

Abstract

In this work the first results obtained in the application of the “Charter of Sustainability Universal Holistic MetaEthic 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO (Carbonneau, Cargnello, 2017) will be exposed “Direct Certification and Direct Warranty of Sustainability 4.1C” applied in about twenty structures located in the hills and in the plain of the of Italy (North East).
The application of the ” Charter of the Sustainability Universal Holistic MetaEthics 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO was shared by more than 65% of compilers of the charter and this without any specific communication to the interviewees. This sharing rose more than 95% if the compilers of the form were titled or well-off and with a correct and appropriate communication and allowed us to overcome the imposition of sector limited protocols, unsustainable according to the “Viticulture Bio-MétaÉthique 4.1CC”, inconsistent with the main objective of the same certification, not applicable and/or difficult to apply anywhere.
We cite as an example the eco-friendly, organic and biodynamic viticulture we were able to eliminate the conflict of interests, unacceptable bureaucracy, unacceptable direct and indirect costs, the “confusion” in relation to “Sustainability”, “Certification”, “Guarantee” , to simplify the system and to identify and/or create peculiarities “Sustainable 4.1C”. We also contribute to the indexed harmonic growth “4.1C”: cultural, moral, civil, relational, “Policy” “MetaEthics 4.1C”, ethics, existential, social, occupational, environmental, economic, technical , as well as the growth of the self: choice, determination, responsibility, declaration, control, discipline, and the growth of process and product, rationalizing and containing costs “MetaEthically 4.1C”.
Important is also to make sure that everyone and everything are directly responsible for the role that is right and put their face directly. Hence the acronym of this certification: “CartaBIOSOSDIR4.1C of the Face” or “Let’s Put All the Face 4.1C” or “Certification by putting the Face” or “Certification of the Face 4.1C” or “Certification from the Face” or “Face Certification”, between a “Company BIO-MétaÉthique 4.1C” compared to a “Conventional Company”: the cost containment has fluctuated between 4% and 21% with peaks exceeding 25%.
The buyers willingness to pay more the wine has fluctuated between 6% and 21% with peaks of over 35%. The increase in total profit ranged from 9% to 21% with peaks that duplicated it.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1*, Gianni TEO1,2, Ruggero LUNARDELLI1, Giuseppe COFFELE1, Giorgio CECCHETTO1, Cesare FERRETTI1, Sergio FORNO1, Valerio BORTOLIN1, Lionello DA RIOS1, Daniele GIGANTE1, Stefano LUNARDELLI1, Sasha RADICON1, Edi KANTE1, Andrej SKERLJ1, Andrej BOLE1, Alessio PICININ1, Antonio KININGER1, Davide DANAU1, Marco RUPEL1, Renzo BONA1, Franco GIACOMIN1, Ivan RONCHI1, Gianmaria RIVA1, Danilo FERRARO1, Francesco DONATI1, Luigino BARISAN1,2, Matteo MASIN1,2, Claudio BONGHI1,2, Cristian BOLZONELLA2, Stefano SCAGGIANTE2

1 Conegliano Campus 5.1C, Conegliano (Italy)
2 University of Padua – Seat of Conegliano, Treviso (Italy)

Contact the author

Keywords

first results BioMétaÉthique sustainability 4.1CC, company, territory, BIO – MétaÉthique 4.1C district

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.

Climate projections over France wine-growing region and its potential impact on phenology

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.