GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

Abstract

In this work the first results obtained in the application of the “Charter of Sustainability Universal Holistic MetaEthic 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO (Carbonneau, Cargnello, 2017) will be exposed “Direct Certification and Direct Warranty of Sustainability 4.1C” applied in about twenty structures located in the hills and in the plain of the of Italy (North East).
The application of the ” Charter of the Sustainability Universal Holistic MetaEthics 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO was shared by more than 65% of compilers of the charter and this without any specific communication to the interviewees. This sharing rose more than 95% if the compilers of the form were titled or well-off and with a correct and appropriate communication and allowed us to overcome the imposition of sector limited protocols, unsustainable according to the “Viticulture Bio-MétaÉthique 4.1CC”, inconsistent with the main objective of the same certification, not applicable and/or difficult to apply anywhere.
We cite as an example the eco-friendly, organic and biodynamic viticulture we were able to eliminate the conflict of interests, unacceptable bureaucracy, unacceptable direct and indirect costs, the “confusion” in relation to “Sustainability”, “Certification”, “Guarantee” , to simplify the system and to identify and/or create peculiarities “Sustainable 4.1C”. We also contribute to the indexed harmonic growth “4.1C”: cultural, moral, civil, relational, “Policy” “MetaEthics 4.1C”, ethics, existential, social, occupational, environmental, economic, technical , as well as the growth of the self: choice, determination, responsibility, declaration, control, discipline, and the growth of process and product, rationalizing and containing costs “MetaEthically 4.1C”.
Important is also to make sure that everyone and everything are directly responsible for the role that is right and put their face directly. Hence the acronym of this certification: “CartaBIOSOSDIR4.1C of the Face” or “Let’s Put All the Face 4.1C” or “Certification by putting the Face” or “Certification of the Face 4.1C” or “Certification from the Face” or “Face Certification”, between a “Company BIO-MétaÉthique 4.1C” compared to a “Conventional Company”: the cost containment has fluctuated between 4% and 21% with peaks exceeding 25%.
The buyers willingness to pay more the wine has fluctuated between 6% and 21% with peaks of over 35%. The increase in total profit ranged from 9% to 21% with peaks that duplicated it.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1*, Gianni TEO1,2, Ruggero LUNARDELLI1, Giuseppe COFFELE1, Giorgio CECCHETTO1, Cesare FERRETTI1, Sergio FORNO1, Valerio BORTOLIN1, Lionello DA RIOS1, Daniele GIGANTE1, Stefano LUNARDELLI1, Sasha RADICON1, Edi KANTE1, Andrej SKERLJ1, Andrej BOLE1, Alessio PICININ1, Antonio KININGER1, Davide DANAU1, Marco RUPEL1, Renzo BONA1, Franco GIACOMIN1, Ivan RONCHI1, Gianmaria RIVA1, Danilo FERRARO1, Francesco DONATI1, Luigino BARISAN1,2, Matteo MASIN1,2, Claudio BONGHI1,2, Cristian BOLZONELLA2, Stefano SCAGGIANTE2

1 Conegliano Campus 5.1C, Conegliano (Italy)
2 University of Padua – Seat of Conegliano, Treviso (Italy)

Contact the author

Keywords

first results BioMétaÉthique sustainability 4.1CC, company, territory, BIO – MétaÉthique 4.1C district

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves.

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Impacts of climate change on cv. Glera buds’ fruitfulness – 18 years of monitoring in the Conegliano-Valdobbiadene area, Italy

Context and purpose of the study. The vine is generally a very fertile plant when compared to other tree species.