terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

Abstract

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards². Instead, indigenous S. cerevisiae strains may enhance the typical sensory properties and characteristic profile of the wine region³. The Okanagan Valley is the major wine-producing region in British Columbia, Canada. The Measday lab has isolated S. cerevisiae indigenous strains from Okanagan Valley vineyards that are genetically distinct from commercial strains⁴. After evaluating the oenological characteristics of six indigenous strains isolated from Okanagan Crush Pad (OCP) winery in laboratory-scale fermentations, two were selected for pilot-scale winery fermentations to assess their potential as wine starter cultures. Fermentations with OCP088 and OCP125 yeast strains were carried out in triplicate 250L stainless steel barrels at OCP winery. Vin Gris (VG, Pinot Noir) and Pinot Gris (PG) varietals were chosen, the grapes were pressed, and the juice was settled to remove skins before inoculation. Major metabolites (organic acids, sugars, and ethanol) were quantified using HPLC-RID, sugar in both wines was mainly fructose, ranging between 16 g/L and 20 g/L, ABV of the finished product ranged between 10.8 and 11.3 %. Volatile compounds (terpenes, esters, ketones, and higher alcohols) were identified using SPME-GC/MS We identified the following number of volatile compounds in each fermentation: OCP125 PG (56), OCP088 PG (52), OCP125 VG (45), OCP088 VG (44). The majority of volatile compounds were esters, which are known for their contribution to wine quality. OCP 125 tended to produce more terpenes than OCP 088. Some of these compounds are responsible for honey and grapefruit-like aromas, which are atypical of these varietals, adding to the complexity of the final product.

 

1. Welke, J. E., Zanus, M., Lazarotto, M., Schmitt, K. G., & Zini, C. A.. (2012) Volatile Characterization by Multivariate Optimization of Headspace-Solid Phase Microextraction and Sensorial Evaluation of Chardonnay Base Wines. Journal of the Brazilian Chemical Society, 23(J. Braz. Chem. Soc., 2012 23(4)). doi: 10.1590/S0103-50532012000400013
2. Borneman, Anthony & Forgan, Angus & Kolouchova, Radka & Fraser, James & Schmidt, Simon. (2016). Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3 (Bethesda, Md.). 6. doi: 10.1534/g3.115.025692.
3. Nikolaou, E., Soufleros, E., Bouloumpasi, E., Tzanetakis N. (2006) Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiology 23, 205-211 doi:10.1016/j. fm.2005.03.004
4. Cheng, E., Martiniuk, J.T., Hamilton, J., McCarthy, M., Castellarin, S., and Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Phenolic Composition in a Canadian Wine Region. Frontiers in Genetics 11, 1-19. doi: 10.3389/fgene.2020.00908.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vivien Measday¹.

1. Wine Research Center, Faculty of Land and Food Systems, University of British Columbia, Canada

Contact the author*

Keywords

Indigenous strains, metabolites, volatile compounds, wine fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.