GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

Abstract

In this work the first results obtained in the application of the “Charter of Sustainability Universal Holistic MetaEthic 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO (Carbonneau, Cargnello, 2017) will be exposed “Direct Certification and Direct Warranty of Sustainability 4.1C” applied in about twenty structures located in the hills and in the plain of the of Italy (North East).
The application of the ” Charter of the Sustainability Universal Holistic MetaEthics 4.1C” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO was shared by more than 65% of compilers of the charter and this without any specific communication to the interviewees. This sharing rose more than 95% if the compilers of the form were titled or well-off and with a correct and appropriate communication and allowed us to overcome the imposition of sector limited protocols, unsustainable according to the “Viticulture Bio-MétaÉthique 4.1CC”, inconsistent with the main objective of the same certification, not applicable and/or difficult to apply anywhere.
We cite as an example the eco-friendly, organic and biodynamic viticulture we were able to eliminate the conflict of interests, unacceptable bureaucracy, unacceptable direct and indirect costs, the “confusion” in relation to “Sustainability”, “Certification”, “Guarantee” , to simplify the system and to identify and/or create peculiarities “Sustainable 4.1C”. We also contribute to the indexed harmonic growth “4.1C”: cultural, moral, civil, relational, “Policy” “MetaEthics 4.1C”, ethics, existential, social, occupational, environmental, economic, technical , as well as the growth of the self: choice, determination, responsibility, declaration, control, discipline, and the growth of process and product, rationalizing and containing costs “MetaEthically 4.1C”.
Important is also to make sure that everyone and everything are directly responsible for the role that is right and put their face directly. Hence the acronym of this certification: “CartaBIOSOSDIR4.1C of the Face” or “Let’s Put All the Face 4.1C” or “Certification by putting the Face” or “Certification of the Face 4.1C” or “Certification from the Face” or “Face Certification”, between a “Company BIO-MétaÉthique 4.1C” compared to a “Conventional Company”: the cost containment has fluctuated between 4% and 21% with peaks exceeding 25%.
The buyers willingness to pay more the wine has fluctuated between 6% and 21% with peaks of over 35%. The increase in total profit ranged from 9% to 21% with peaks that duplicated it.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1*, Gianni TEO1,2, Ruggero LUNARDELLI1, Giuseppe COFFELE1, Giorgio CECCHETTO1, Cesare FERRETTI1, Sergio FORNO1, Valerio BORTOLIN1, Lionello DA RIOS1, Daniele GIGANTE1, Stefano LUNARDELLI1, Sasha RADICON1, Edi KANTE1, Andrej SKERLJ1, Andrej BOLE1, Alessio PICININ1, Antonio KININGER1, Davide DANAU1, Marco RUPEL1, Renzo BONA1, Franco GIACOMIN1, Ivan RONCHI1, Gianmaria RIVA1, Danilo FERRARO1, Francesco DONATI1, Luigino BARISAN1,2, Matteo MASIN1,2, Claudio BONGHI1,2, Cristian BOLZONELLA2, Stefano SCAGGIANTE2

1 Conegliano Campus 5.1C, Conegliano (Italy)
2 University of Padua – Seat of Conegliano, Treviso (Italy)

Contact the author

Keywords

first results BioMétaÉthique sustainability 4.1CC, company, territory, BIO – MétaÉthique 4.1C district

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.

Variability of Tempranillo phenology within the toro do (Spain) and its relationship to climatic characteristics

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.