GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Abstract

Context and purpose of the study – Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually. The biotypes currently known (A-G) are differentiated based on their host-adapted performance on groups of Vitis plants (Vitis vinifera (E), American Vitis species (A), hybrids (ExA) and (AxA). A standardized protocol (double isolation chamber system) is employed to verify the hypothesis that these populations stem from a biotype, which is better adapted to create galls on V. vinifera leaves.

Material and methods –In the present study we monitored above- and belowground insect life table and host performance parameters of leaf-feeding grape Phylloxera strains collected from infested commercial vineyards. Standard phylloxera strains belonging to the biotypes A, B and C are used as anchor lineages for comparisons of phylloxera performance on the host plants: Teleki 5C, Riesling, Fercal and Marechal Foch. Three grape phylloxera strains from vineyards in Italy, Austria and Germany were monitored rating life table (insect based) and host performance (root- and leaf-gall based) parameters once per week for 40 days.

Results – our preliminary results clearly identified Grape Phylloxera lineages showing host-adapted performance attributed to Biotype G indicating superior performance on leaves of V. vin. cv. Riesling if compared with standard biotypes. These lineages maintained the traits over several asexual life cycles under controlled quarantine conditions and serve as experimental reference strains to further elucidate the mechanisms of these shifts in host performance. Studies on the impact of elevated temperatures to enhance fitness and population size of Biotype G Phylloxera are underway; as is research on the Phylloxera – grapevine interaction under climate change conditions, which may shed further light on the new phenomenon in commercial vineyards.
In conclusion biotype together with host plant genotype, environmental conditions, altered vineyard technology and management may affect the ecological network in vineyards leading enhanced susceptibility against leaf-feeding Phylloxera. Understanding and modeling of these factors is essential for the development of vineyard management strategies in phylloxerated wine areas.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Astrid FORNECKa*, Markus W. EITLEa, Jurrian H.G. WILMINKab, Michael BREUERab

a University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Crop Sciences,  Institute of Viticulture and Pomology, Konrad Lorenz Straße 24, A-3430 Tulln
b State Institute for Viticulture and Enology, Merzhauser Str. 119, D-79100 Freiburg

Contact the author

Keywords

grape phylloxera, leaf galls, biotypes, vineyard management, host plant adaptation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Assessing the feasibility of direct injection for pesticide residue analysis in grape juice by liquid chromatography/triple quadrupole mass spectrometry

In Brazil, the regulation of pesticide residues is guided by the National Health Surveillance Agency (ANVISA) and the Ministry of Agriculture and Livestock (MAPA), emphasizing the importance of monitoring pesticide levels in agricultural products to protect consumer health.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

A study of soil pH on the experimental field resulted in a high variability of pH on a very small scale. This kind of heterogenity in soil pH have effects on growth of two grapevine varieties on rootstock Kober 5BB

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.