GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Abstract

Context and purpose of the study – Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually. The biotypes currently known (A-G) are differentiated based on their host-adapted performance on groups of Vitis plants (Vitis vinifera (E), American Vitis species (A), hybrids (ExA) and (AxA). A standardized protocol (double isolation chamber system) is employed to verify the hypothesis that these populations stem from a biotype, which is better adapted to create galls on V. vinifera leaves.

Material and methods –In the present study we monitored above- and belowground insect life table and host performance parameters of leaf-feeding grape Phylloxera strains collected from infested commercial vineyards. Standard phylloxera strains belonging to the biotypes A, B and C are used as anchor lineages for comparisons of phylloxera performance on the host plants: Teleki 5C, Riesling, Fercal and Marechal Foch. Three grape phylloxera strains from vineyards in Italy, Austria and Germany were monitored rating life table (insect based) and host performance (root- and leaf-gall based) parameters once per week for 40 days.

Results – our preliminary results clearly identified Grape Phylloxera lineages showing host-adapted performance attributed to Biotype G indicating superior performance on leaves of V. vin. cv. Riesling if compared with standard biotypes. These lineages maintained the traits over several asexual life cycles under controlled quarantine conditions and serve as experimental reference strains to further elucidate the mechanisms of these shifts in host performance. Studies on the impact of elevated temperatures to enhance fitness and population size of Biotype G Phylloxera are underway; as is research on the Phylloxera – grapevine interaction under climate change conditions, which may shed further light on the new phenomenon in commercial vineyards.
In conclusion biotype together with host plant genotype, environmental conditions, altered vineyard technology and management may affect the ecological network in vineyards leading enhanced susceptibility against leaf-feeding Phylloxera. Understanding and modeling of these factors is essential for the development of vineyard management strategies in phylloxerated wine areas.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Astrid FORNECKa*, Markus W. EITLEa, Jurrian H.G. WILMINKab, Michael BREUERab

a University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Crop Sciences,  Institute of Viticulture and Pomology, Konrad Lorenz Straße 24, A-3430 Tulln
b State Institute for Viticulture and Enology, Merzhauser Str. 119, D-79100 Freiburg

Contact the author

Keywords

grape phylloxera, leaf galls, biotypes, vineyard management, host plant adaptation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Panorama des actions d’amélioration variétale face aux challenges d’aujourd’hui et de demain, le rôle de l’IFV

In April 2024, the French official catalog includes 449 grape varieties and rootstocks. In 10 years it has been enriched with 70 varieties. It is an indisputable marker of the interest of professionals in genetic resources of all origins and the expectations they have to prepare the viticulture of the future. The scientific community has now put all irons in the fire and is not neglecting any avenue of adaptation. The regular decline in the use of phytosanitary products and the already marked effects of climate change are the targets of varietal improvement.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.