GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Abstract

Context and purpose of the study – Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually. The biotypes currently known (A-G) are differentiated based on their host-adapted performance on groups of Vitis plants (Vitis vinifera (E), American Vitis species (A), hybrids (ExA) and (AxA). A standardized protocol (double isolation chamber system) is employed to verify the hypothesis that these populations stem from a biotype, which is better adapted to create galls on V. vinifera leaves.

Material and methods –In the present study we monitored above- and belowground insect life table and host performance parameters of leaf-feeding grape Phylloxera strains collected from infested commercial vineyards. Standard phylloxera strains belonging to the biotypes A, B and C are used as anchor lineages for comparisons of phylloxera performance on the host plants: Teleki 5C, Riesling, Fercal and Marechal Foch. Three grape phylloxera strains from vineyards in Italy, Austria and Germany were monitored rating life table (insect based) and host performance (root- and leaf-gall based) parameters once per week for 40 days.

Results – our preliminary results clearly identified Grape Phylloxera lineages showing host-adapted performance attributed to Biotype G indicating superior performance on leaves of V. vin. cv. Riesling if compared with standard biotypes. These lineages maintained the traits over several asexual life cycles under controlled quarantine conditions and serve as experimental reference strains to further elucidate the mechanisms of these shifts in host performance. Studies on the impact of elevated temperatures to enhance fitness and population size of Biotype G Phylloxera are underway; as is research on the Phylloxera – grapevine interaction under climate change conditions, which may shed further light on the new phenomenon in commercial vineyards.
In conclusion biotype together with host plant genotype, environmental conditions, altered vineyard technology and management may affect the ecological network in vineyards leading enhanced susceptibility against leaf-feeding Phylloxera. Understanding and modeling of these factors is essential for the development of vineyard management strategies in phylloxerated wine areas.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Astrid FORNECKa*, Markus W. EITLEa, Jurrian H.G. WILMINKab, Michael BREUERab

a University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Crop Sciences,  Institute of Viticulture and Pomology, Konrad Lorenz Straße 24, A-3430 Tulln
b State Institute for Viticulture and Enology, Merzhauser Str. 119, D-79100 Freiburg

Contact the author

Keywords

grape phylloxera, leaf galls, biotypes, vineyard management, host plant adaptation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Health benefits of wine industry by-products

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food

SO2 consumption in white wine oxidation: approaches to low-input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in wine shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).