GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Decline of new vineyards in Southern Spain

Decline of new vineyards in Southern Spain

Abstract

Context and purpose of the study – In-season vineyard pest management relies on proper timing, selection, and application of products. Most of the research on pest management tends to focus on the influence of regional conditions on these aspects, with an emphasis on product timing and efficacy evaluation. One aspect that is not fully vetted in various vineyard regions is application (sprayer) technology. The purpose of this study was to determine the influence of regional conditions on sprayer performance in commercial wine grape vineyards in eastern Washington.

Material and methods – Three commercially available sprayer technologies were optimized and assessed in the 2016 and 2017 production seasons. The sprayer technologies evaluated were: multi-fan heads, pneumatic, and electrostatic. Data were collected in commercial Vitis vinifera wine grape vineyards at two growth stages, 50% bloom and pea sized berries using a fluorescent tracer (Pyranine) to track deposition within the vineyard. Aspects of the sprayers that were evaluated were spray deposition patterns in the canopy and in-field drift (aerial and vineyard floor). Sprayer deposition was collected on 5cm x 5cm plastic cards. These cards were placed in 5 canopy zones (upper sides, upper middle, and both sides of fruit zone), on the vineyard floor in the first 3 rows downwind from the sprayer, and on aerial poles collecting drift in 0.3-meter increments above the canopy for 0.9-meters in the first 3 rows downwind from the sprayer. Sprayer data collected in the vineyard was used to evaluate total spray deposition of each sprayer.

Results – All sprayer technologies showed consistent in-canopy deposition and drift patterns at both canopy growth stages. The greatest deposition found in the canopy; the Quantum Mist had 95.57% and 98.48%, the Gregorie had 97.35% and 97.08%, and the On Target had 91.79% and 80.12% of total spray deposited in the canopy at the 50% bloom and pea-sized berry growth stages, respectively. Aerial and floor drift was relatively minimal with these technologies. The Quantum Mist had aerial drift of 1.65% and 0.01%, and floor drift of 2.78% and 1.51% for the two growth stages, respectively. The Gregoire had aerial drift of 0.09% and 0.08%, and floor drift of 2.56% and 2.84% for the two growth stages, respectively. The On Target had aerial drift of 0.42% and 4.05%, and floor drift of 7.79% and 15.83% for the two growth stages, respectively. Aerial and floor drift were highest in the row closest to spray application, indicating that longer-distance drift is relatively low with modern spray technologies. Ultimately, the information generated from this project will be used to help optimize sprayer selection for different vineyard sites.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Margaret MCCOY1, Gwen HOHEISEL2, Lav KHOT3, Michelle MOYER1

1 Dept. of Horticulture, WSU IAREC, 24106 N Bunn Road,Prosser, Washington, USA
2 Dept. of Extension, WSU IAREC, 24106 N Bunn Road,Prosser, Washington, USA
3 Dept. of Biological Systems, Engineering WSU IAREC, 24106 N Bunn Road,Prosser, Washington, USA

Keywords

Sprayer, drift, deposition, Pyranine, fluorescent, optimization

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.