OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Abstract

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours. The quanti-fication of different forms of copper in wine may allow winemakers to target more effective strategies for the removal of Cu and also to better understand the likelihood of reductive characters emerging in wines during aging.

A simple colorimetric method, utilising bicinchonic acid (BCA), was validated for the determination of the different forms of Cu in white wines, as well as the total Cu concentration in red wine. The determination of total Cu in white wines utilises an addition of excess silver(I) in order to effectively release copper from sulfide and allow quantitative complexation by BCA. The non-sulfide bound form of Cu in the white wine was determined by BCA analysis of the white wine without silver addition. In the case of red wines, a simple digestion procedure eliminated colour prior to subsequent analysis as per the white wines. The total Cu measured by the colorimetric method had an accuracy equivalent to ICPOES and a linear range of 0.04 to 1.0 mg/L. The different forms of Cu measured in white wines agreed with the results obtained by a more laborious electrochemical method.

The removal of different forms of Cu from white and red wine was subsequently studied using membrane filters of various media and pore size, depth filters and PVI/PVP. Only PVI/PVP could efficiently remove both forms of Cu, whilst the filtration techniques displayed activity for removing the sulfide bound form of Cu. Of the membrane filters, nylon and polytetrafluoroethylene media could adsorb sulfide-bound Cu, with little dependence on pore size, but their capacity for removal decreased rapidly with wine filtration volume. Similar results were observed with cellulose-based depth filters, but much greater removal efficiency was observed for cellulose depth filters impregnated with diatomaceous earth. This type of filter had active re-moval of sulfide-bound Cu from larger volumes of wine. The results allow rapid determination of the Cu forms in wine along with the assessment of the best strategies for their removal.

Abbreviations: PVI/PVP, polyvinylimidazole/polyvinylpyrrolidone.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nikolaos Kontoudakis Kieran Hirlam, Mark Smith, Paul Smith, Neil Scrimgeour, Paul Bowyer, Eric Wilkes, Andrew Clark

Andrew Clark: Charles Sturt University-National Wine and Grape Industry Centre Eric Wilkes, Neil Scrimgeour, Kieran Hirlam, Mark Smith: The Australian Wine Research Institute Mark Smith: Wine Australia Paul Bowyer: Blue H2O Filtration

Contact the author

Keywords

Copper measurment , Sulfide-bound Cu, Filtration , PVP/PVI 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Chemical composition of press and free-run wines from three vintages and Bordeaux grape varieties. A comprehensive analysis

Press wines play a crucial role in red winemaking, representing up to 15% of the final blend [1]. Optimizing their value is essential both economically and for maintaining wine identity, especially given evolving climatic and societal challenges. However, little recent research exists on their composition.