OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Abstract

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours. The quanti-fication of different forms of copper in wine may allow winemakers to target more effective strategies for the removal of Cu and also to better understand the likelihood of reductive characters emerging in wines during aging.

A simple colorimetric method, utilising bicinchonic acid (BCA), was validated for the determination of the different forms of Cu in white wines, as well as the total Cu concentration in red wine. The determination of total Cu in white wines utilises an addition of excess silver(I) in order to effectively release copper from sulfide and allow quantitative complexation by BCA. The non-sulfide bound form of Cu in the white wine was determined by BCA analysis of the white wine without silver addition. In the case of red wines, a simple digestion procedure eliminated colour prior to subsequent analysis as per the white wines. The total Cu measured by the colorimetric method had an accuracy equivalent to ICPOES and a linear range of 0.04 to 1.0 mg/L. The different forms of Cu measured in white wines agreed with the results obtained by a more laborious electrochemical method.

The removal of different forms of Cu from white and red wine was subsequently studied using membrane filters of various media and pore size, depth filters and PVI/PVP. Only PVI/PVP could efficiently remove both forms of Cu, whilst the filtration techniques displayed activity for removing the sulfide bound form of Cu. Of the membrane filters, nylon and polytetrafluoroethylene media could adsorb sulfide-bound Cu, with little dependence on pore size, but their capacity for removal decreased rapidly with wine filtration volume. Similar results were observed with cellulose-based depth filters, but much greater removal efficiency was observed for cellulose depth filters impregnated with diatomaceous earth. This type of filter had active re-moval of sulfide-bound Cu from larger volumes of wine. The results allow rapid determination of the Cu forms in wine along with the assessment of the best strategies for their removal.

Abbreviations: PVI/PVP, polyvinylimidazole/polyvinylpyrrolidone.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nikolaos Kontoudakis Kieran Hirlam, Mark Smith, Paul Smith, Neil Scrimgeour, Paul Bowyer, Eric Wilkes, Andrew Clark

Andrew Clark: Charles Sturt University-National Wine and Grape Industry Centre Eric Wilkes, Neil Scrimgeour, Kieran Hirlam, Mark Smith: The Australian Wine Research Institute Mark Smith: Wine Australia Paul Bowyer: Blue H2O Filtration

Contact the author

Keywords

Copper measurment , Sulfide-bound Cu, Filtration , PVP/PVI 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Among the items preserved in gene banks, the old standard and autochthonous varieties represent an increasing value, since these varieties may have properties to make their cultivation more effective under changing climatic conditions. The increasingly extreme weather is a huge challenge for the viticulture. Collectional varieties can also play important role in protection against pests and pathogens. A genebank ensures not only the preservation of rare varieties, but also gives the opportunity for more knowledge and research of these varieties.

Method for the evaluation of climatic changes envisaging the protection of grape-growing terroirs: the Géoviticulture MCC system in the evaluation of the potential impact of the construction of hydroelectric power plants on viticulture

La recherche, conduite en 2002, a envisagé l’estimation, a priori, de l’effet du changement mesoclimatique sur le potentiel qualitatif de la région viticole de la Serra Gaúcha (Vallée du Rio das Antas) – Brésil, en fonction de la construction de 3 usines hydroélectriques.

Terroir aspects in development of quality of Egri bikavér

Egri Bikavér (Bull’s Blood) is one of the most remarkable Hungarian red wines on inland and foreign markets as well. From the end of the 70’s the quality of Egri Bikavér was decreasing continually due to mass production. The concept of production of quality wines became general in the mid 90’s again and it resulted in a new Origin Control System, for the first time that of Egri Bikavér in Hungary.

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.