GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes


Context and purpose of the study – In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks. There is little information on the performance of most rootstocks against northern root-knot nematode (Meloidogyne hapla), the main plant-parasitic nematode species in the state, and even less information on dual performance against dagger nematode (Xiphinema sp.).

Material and methods – Partnering with a commercial vineyard, we established a 3 hectare, long-term trial evaluating currently-available rootstocks in 2015, with the intent to continue the trial through vineyard establishment to vineyard production maturity (until 2025). This vineyard was undergoing replanting after 20+ years of production in own-rooted V. vinifera ‘Chardonnay’; the intent of the replant was to maintain vineyard infrastructure, but to manage for plant parasitic nematodes. The rootstocks being evaluated are: 101-14 Mtg, 1103 P, Harmony, Teleki 5C, an own-rooted control, and a self-grafted control. The scion is Chardonnay. All vines were certified through the Washington State Department of Agriculture’s certification program. The rootstock treatments were planted in 4 replicated plots of soil treatments consisting of fumigated (metam sodium through the existing drip irrigation lines), nonfumigated, and nonfumigated inoculated with M. hapla, creating low, moderate, and high nematode pressure locations under which to evaluate rootstock performance.

Results – Preplant fumigation was only effective at reducing M. hapla population densities for the first 6 months after application, yet it reduced densities of Xiphinema for 2 growing seasons. Rootstocks were poor hosts for M. hapla relative to own-rooted V. vinifera, but all were acceptable hosts for Xiphinema sp. Several rootstocks (e.g., Harmony, 101-14, 1103 P) had greater shoot biomass at the end of year 3 (end of the establishment period) compared to own-rooted V. vinifera, indicating that longer-term impacts on vigor is likely a primary driver behind the resistance phenotype these rootstocks impart under nematode feeding pressure. The goal of this project is to understand the long-term performance of rootstocks and the impacts of nematodes on vineyard lifespan in Washington State.


Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster


Michelle M. MOYER1*, Katherine EAST1, and Inga ZASADA2

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, WA, USA
2 USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, USA

Contact the author


rootstock, vineyard establishment, nematodes, preplant fumigation, resistance, tolerance


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.