GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Abstract

Context and purpose of the study – Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Material and methods – A field study was conducted in north-central San Joaquin Valley of California to deduce the interactive effects of irrigation and mechanical canopy management on the phenolic composition of grape and wine, and volatile compounds of the wines produced from Syrah (Vitis vinifera L.). Irrigation treatments consisted of a grower control of 70% crop evapotranspiration (ETc) replacement (IRR-I) from anthesis to harvest, compared to a stronger plant water stress between fruit set and veraison with 50% ETc replacement, otherwise 70% ETc replacement rest of the season (IRR-II). Four canopy management treatments were crossed with the irrigation design. A control treatment was pruned by hand to 22 two-node spurs (C) with no further manipulation. Experimental canopy management treatments (CM) consisted in mechanically box pruning the vines to a 0.10 m hedge combined with 3 levels of mechanically shoot thinning: heavy shoot thinning (M1), light shoot thinning (M2) and no shoot thinning (M3).

Results – In this two-year study, the irrigation treatments had no impact on the canopy architecture, but mechanization treatments were effective. However, this study reports sensitivity of canopy management to weather conditions in previous and current year. The irrigation treatments affected berry composition more than mechanization, and the effect was insensitive of the vintage effect. IRR-II reduced berry weight, resulting in reduced yield and crop load in both years but greater berry anthocyanins, tannins and total phenolics. For anthocyanins, this result was also confirmed on wine. One year was characterized by higher amount of precipitation at fruit set, and in this year the concentration in 3-isobutyl-2-methoxypyrazine was higher, but the concentration of terpenes and norisoprenoids was lower, with the exception of β-damascenone that was stable between years but increased with IRR-II. In typical years, where no precipitation is received in the San Joaquin Valley from fruit set to veraison, the M2 and IRR-II method may contribute to improve berry skin and wine phenolics as well as to reducing IBMP in wine while achieving high yields. This trial showed that precipitation can modulate the impact of cultural practices on grape and wine composition, and that lower irrigation amounts do not correspond to reduced wine quality even in the semi-arid and warm conditions of Central California.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Johann MARTINEZ-LUSHER2, S. Kaan KURTURAL2

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA
2 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Contact the author

Keywords

mechanical pruning, mechanical shoot thinning, deficit irrigation, 3-Isobutyl-2-methoxypyrazine, β-Damascenone, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Evaluation of new fem grapevine varieties resistant to the main fungal diseases

Context and purpose of the study. The genetic improvement of grapevines at the Edmund Mach Foundation (FEM) has evolved significantly since its inception, and its philosophy on sustainable viticulture through crossbreeding techniques aligns with the urgent need to reduce chemical use in agriculture.

Contribution of grape seeds to evolution of acetaldehyde, pigments and tannins reactive towards salivary proteins of red wine over time

This study investigated the impact of the gsk/gse ratio on the evolution of acetaldehyde and of major phenolic compounds of aglianico wine in wine like solution and real wine. Four model solutions and the correspondant control wines were prepared. The natural weight ratio between grape skins and seeds was determined on the real grapes, and a control wine was obtained from those.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Barbera d’Asti: the characterization of the vineyard sites

[English version below]

L’objectif de l’étude est de mettre en évidence les différences rencontrées entre les vins Barbera d’Asti, qui sont produits en AOC. Celles-ci sont imputées aux terroirs caractérisés selon les facteurs pédologiques, climatiques, et qui conduisent à des différents potentiels viticoles et œnologiques. Il est proposé une individualisation des sous-zones.