GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Abstract

Context and purpose of the study – Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Material and methods – A field study was conducted in north-central San Joaquin Valley of California to deduce the interactive effects of irrigation and mechanical canopy management on the phenolic composition of grape and wine, and volatile compounds of the wines produced from Syrah (Vitis vinifera L.). Irrigation treatments consisted of a grower control of 70% crop evapotranspiration (ETc) replacement (IRR-I) from anthesis to harvest, compared to a stronger plant water stress between fruit set and veraison with 50% ETc replacement, otherwise 70% ETc replacement rest of the season (IRR-II). Four canopy management treatments were crossed with the irrigation design. A control treatment was pruned by hand to 22 two-node spurs (C) with no further manipulation. Experimental canopy management treatments (CM) consisted in mechanically box pruning the vines to a 0.10 m hedge combined with 3 levels of mechanically shoot thinning: heavy shoot thinning (M1), light shoot thinning (M2) and no shoot thinning (M3).

Results – In this two-year study, the irrigation treatments had no impact on the canopy architecture, but mechanization treatments were effective. However, this study reports sensitivity of canopy management to weather conditions in previous and current year. The irrigation treatments affected berry composition more than mechanization, and the effect was insensitive of the vintage effect. IRR-II reduced berry weight, resulting in reduced yield and crop load in both years but greater berry anthocyanins, tannins and total phenolics. For anthocyanins, this result was also confirmed on wine. One year was characterized by higher amount of precipitation at fruit set, and in this year the concentration in 3-isobutyl-2-methoxypyrazine was higher, but the concentration of terpenes and norisoprenoids was lower, with the exception of β-damascenone that was stable between years but increased with IRR-II. In typical years, where no precipitation is received in the San Joaquin Valley from fruit set to veraison, the M2 and IRR-II method may contribute to improve berry skin and wine phenolics as well as to reducing IBMP in wine while achieving high yields. This trial showed that precipitation can modulate the impact of cultural practices on grape and wine composition, and that lower irrigation amounts do not correspond to reduced wine quality even in the semi-arid and warm conditions of Central California.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Johann MARTINEZ-LUSHER2, S. Kaan KURTURAL2

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA
2 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Contact the author

Keywords

mechanical pruning, mechanical shoot thinning, deficit irrigation, 3-Isobutyl-2-methoxypyrazine, β-Damascenone, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies.

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products.

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.