GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Abstract

Context and purpose of the study – Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Material and methods – A field study was conducted in north-central San Joaquin Valley of California to deduce the interactive effects of irrigation and mechanical canopy management on the phenolic composition of grape and wine, and volatile compounds of the wines produced from Syrah (Vitis vinifera L.). Irrigation treatments consisted of a grower control of 70% crop evapotranspiration (ETc) replacement (IRR-I) from anthesis to harvest, compared to a stronger plant water stress between fruit set and veraison with 50% ETc replacement, otherwise 70% ETc replacement rest of the season (IRR-II). Four canopy management treatments were crossed with the irrigation design. A control treatment was pruned by hand to 22 two-node spurs (C) with no further manipulation. Experimental canopy management treatments (CM) consisted in mechanically box pruning the vines to a 0.10 m hedge combined with 3 levels of mechanically shoot thinning: heavy shoot thinning (M1), light shoot thinning (M2) and no shoot thinning (M3).

Results – In this two-year study, the irrigation treatments had no impact on the canopy architecture, but mechanization treatments were effective. However, this study reports sensitivity of canopy management to weather conditions in previous and current year. The irrigation treatments affected berry composition more than mechanization, and the effect was insensitive of the vintage effect. IRR-II reduced berry weight, resulting in reduced yield and crop load in both years but greater berry anthocyanins, tannins and total phenolics. For anthocyanins, this result was also confirmed on wine. One year was characterized by higher amount of precipitation at fruit set, and in this year the concentration in 3-isobutyl-2-methoxypyrazine was higher, but the concentration of terpenes and norisoprenoids was lower, with the exception of β-damascenone that was stable between years but increased with IRR-II. In typical years, where no precipitation is received in the San Joaquin Valley from fruit set to veraison, the M2 and IRR-II method may contribute to improve berry skin and wine phenolics as well as to reducing IBMP in wine while achieving high yields. This trial showed that precipitation can modulate the impact of cultural practices on grape and wine composition, and that lower irrigation amounts do not correspond to reduced wine quality even in the semi-arid and warm conditions of Central California.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Johann MARTINEZ-LUSHER2, S. Kaan KURTURAL2

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA
2 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Contact the author

Keywords

mechanical pruning, mechanical shoot thinning, deficit irrigation, 3-Isobutyl-2-methoxypyrazine, β-Damascenone, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Évolutions qualitative et quantitative des flores microbiennes de moûts de pommes à cidre au cours de la fermentation: relations avec le terroir et la composition physico-chimique des fruits

En France, la filière A.O.C. cidricole emploie de plus en plus de levures initialement sélectionnées pour les fermentations des vins. Le risque d’une uniformisation organoleptique ou d’un marquage

Phenolic composition of Bordeaux grapes 2009 vintage: comparison with 2006, 2007 and 2008 vintages

‘Cabernet sauvignon’ and ‘Merlot’ are among the most recognized red wine grape cultivars. This work is aimed at investigating the proanthocyanidin composition of skins and seeds to determine the grape variety and the vintage effects on the phenolic composition of Bordeaux grapes.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.